代码随想录回溯总结

0、 前言

我很少写总结,但是回溯是我写的最多,个人也觉得比较重要的一个专题,所以写一个简单的总结一下这段时间刷的回溯题型

1、回溯的定义

回溯就是暴力搜索,而暴力确实我们在开发中最先想到一种方法,所以必须要掌握

2、回溯解决那些问题
  • 组合问题: N个数里面按一定规则找出k个数的集合
  • 排列问题: N个数按一定规则全排列,有几种排列方式
  • 切割问题: 一个字符串按一定规则有几种切割方式
  • 子集问题: 一个N个数的集合里有多少符合条件的子集
  • 棋盘问题: N皇后,解数独等问题
3、回溯模板

回溯也是有套路的

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}
4、问题详解
4、1组合问题:
4.1.1 组合

题目:
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案

总结:for循环横向遍历,递归纵向遍历,回溯不断调整结果集
在这里插入图片描述

4.1.2 组合总和 II

总结:我们在这里要学会组合问题的降重
在这里,我们要明白树枝去重和树层去重这两个概念
used[i-1] = true:表示的在同一个树枝上
used[i-1] = false:表示在同一个树层上
也可以用另外的一个方法

if(i > index && nums[i] == nums[i-1]) continue
在这里插入图片描述

4.1.3 组合的其他问题

总结:

  • 如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题
  • 如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:回溯算法:电话号码的字母组合
4.2排列问题

排列问题和组合问题的区别:

  • 每层都是从0开始搜索而不是startIndex
  • 需要used数组记录path里都放了哪些元素了
4.2.1全排列

总结:这是模板题

4.2.2全排列去重

这道题有点意思,去重可以使用set,也可以使用used数组,但是基本上都是使用used,因为它的时间复杂度低一点
要好好判断是树枝降重和树层降重

4.3子集问题
4.3.1子集

总结:模板题

######4.3.2子集问题去重

总结:去重原理参照前面组合问题

4.4 切割问题
分割回文串

总结:
1、我们需要判断是否是回文串
2、组合的模板
3、我们需要判断切割的位置(要不要加i+1)
在这里插入图片描述

4.5 棋盘问题

暂时未总结,待更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值