AnomalyDetection
文章平均质量分 91
莫知我哀
世上无难事,只要肯登攀
展开
-
异常检测-pyod包的入门使用
本文github地址:pyod包的入门使用文章目录0异常检测简介1pyod包简介1.1注意事项1.2函数的通用使用方法1.3模型保存1.4三个函数组1.5不同模型在基准数据上的表现1.6多个基准检测器的结合2异常值检测示例2.1 ABOD 算法2.1.1Angle-Based Outlier Detection (ABOD)原理介绍2.1.2 原始数据2.1.3 abod算法训练2.2 KNN算法 介绍2.2.1 knn函数2.2.2模型训练2.3 ADOB 与KNN的检验结果对比0异常检测简介.原创 2021-01-12 14:22:17 · 3053 阅读 · 0 评论 -
异常检测方法在时间序列数据上的应用综述(记录)
时间序列异常值检测综述介绍时间序列异常值检测的分类点异常样本的检测单变量时间序列基于模型的方法基于预测模型基于估计模型基于密度的方法基于直方图的方法多变量时间序列单变量方法多变量方法序列异常段的检测单变量时间序列多变量时间序列基于单变量检测方法基于多变量检测的方法异常时间序列的检测降维方法异常度评价未来研究方向降维方法异常度评价未来研究方向介绍异常值的定义:“An observation which deviates so much from other observations as to a原创 2021-02-04 17:21:27 · 2032 阅读 · 3 评论 -
异常检测-高维数据的处理
github地址:链接异常检测-高维数据的处理1高维问题的困难2Feature bagging方法2.1feature bagging 原理2.2pyod feature bagging示例孤立森林3.1原理3.2示例:1高维问题的困难由于数据维度的上升,数据的样本空间会呈指数级别增长,使得数据变得稀疏维度越高,计算距离的计算量越大,并且由于空间的稀疏性,很多点之间的距离相差都不大2Feature bagging方法2.1feature bagging 原理参考:链接bagg.原创 2021-01-19 19:36:26 · 1803 阅读 · 1 评论 -
异常检测_基于相似度的方法
github 地址:链接异常检测-基于相似度的方法1常用方法2Pyod中基于相似度的异常检测函数3LOF方法示例1常用方法基于距离的度量基于单元基于索引基于密度的度量2Pyod中基于相似度的异常检测函数LOF基于密度检测方法。可量化每个数据点的异常程度。适用中等高维数据。COF类似于LOF,但密度估计不一样。LOF是基于欧氏距离的,即默认数据是以球形分布的,假设是特征是线性相关的,LOF就无能为力。COF中,近邻的局部密度是基于最短路径方法求得的,亦称链式距离(.原创 2021-01-19 19:29:02 · 628 阅读 · 3 评论 -
异常检测-线性检测模型
github:链接这里写目录标题1线性模型的方法2数据可视化2.1导入数据集2.2观察数据统计特征2.3相关性分析2.4绘制变量的概率分布图2.5绘制变量两两之间的相关性2.6数据降维3pyod包的pca函数3/1PCA方法检测异常值的基本原理3.2pyod.pca函数3.3pyod.pca示例生成数据训练模型训练结果4 对breast-cancer数据集进行异常分析1线性模型的方法线性回归主成分分析前提假设:近似线性相关子空间假设大致意思就是,数据在生成过程中,由于是同一种内在.原创 2021-01-17 20:39:36 · 494 阅读 · 0 评论 -
异常检测 - 基于统计学的方法
github 地址:链接目录异常检测—基于统计学的方法参数方法非参数方法HBOS方法实践pyod中hbos函数简介hbos实例生成数据使用HBOS进行预测预测结果生成热力图异常检测—基于统计学的方法参数方法假定正常的数据对象被一个以Θ\ThetaΘ为参数的参数分布产生。该参数分布的概率密度函数f(x,Θ)f(x,\Theta)f(x,Θ)给出对象xxx被该分布产生的概率。该值越小,xxx越可能是异常点。 基于正态分布的一元异常点检测x(i)∼N(μ,σ2)x^{(i)}\s.原创 2021-01-15 21:11:41 · 662 阅读 · 0 评论