集成学习1-投票法的原理和案例分析

参考资料:#>《Python 机器学习》
github地址:欢迎访问

投票法的原理

image-20210413143353641

如上图所示,在同一训练集上,训练得到多个分类或回归模型,然后通过一个投票器,通过某种加权方式,输出得票率最高的结果。

集成模型好于单个分类器的原因

假设:n个基分类器的出错率都是 ϵ \epsilon ϵ,且相互独立,则n个基分类器的结果中,出现k个错误的数量服从二项分布,对集成模型(简单多数投票)来说,n个结果中,有K个错误的概率是:

image-20210413144209168

当K>n/2时,集成模型输出错误结果

假设 ϵ = 0.25 , n = 11 \epsilon=0.25,n=11 ϵ=0.25,n=11,输出错误结果的概率为:

image-20210413144430613
from scipy.special import comb #计算组合
import numpy as np 
import matplotlib.pyplot as plt 
plt.rcParams['font.sans-serif'] = ['SimHei'] # 替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False  # (解决坐标轴负数的负号显示问题)

import math 

def ensemble_error(n_classifier,epsilon):
    k = math.ceil(n_classifier/2)#向上取整
    probs = [comb(n_classifier,k) * epsilon ** k * (1-epsilon)**(n_classifier-k)
            for k in range(k,n_classifier+1)]
    return sum(probs)

base_error = np.arange(0.0,1.01,0.01)
en_error = [ensemble_error(11,base_e) for base_e in base_error]

plt.figure(figsize=(8,6))
plt.plot(base_error,en_error,label = '集成误差')
plt.plot(base_error,base_error,linestyle = '--',label = '基础分类器误差')
plt.xlabel('基错误率',fontsize = 15)
plt.ylabel('集成错误率',fontsize = 15)
plt.grid()
plt.legend()
plt.show()

png

如图片所示,只有当基分类器的错误率 ϵ < 0.5 \epsilon<0.5 ϵ<0.5时,多数投票的继承分类器出错率才会低于单个分类器

加权多数投票

硬投票

不同的基模型可能有不同的正确率,因此需要赋予不同的结果权重值

image-20210413150821176

w j 表 示 分 类 器 C j 对 应 的 权 重 , y ^ 是 输 出 类 标 , χ A 是 类 标 为 i 的 一 个 分 类 器 集 合 w_j表示分类器C_j对应的权重,\hat y是输出类标,\chi_A是类标为i的一个分类器集合 wjCjy^χAi

软投票

image-20210413151306317

p i j 是 第 j 个 分 类 器 预 测 为 i 的 概 率 p_{ij}是第j个分类器预测为i的概率 pijji

投票法的使用条件

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • **基模型之间应该有较小的同质性。**例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。

投票法案例

from sklearn import datasets

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

from sklearn.ensemble import VotingClassifier
from sklearn.pipeline import make_pipeline

数据读取

iris = datasets.load_iris()

# 选择两种花型,两个属性
X,y = iris.data[50:,[1,2]],iris.target[50:]
np.unique(y)
array([1, 2])
le = LabelEncoder()
y = le.fit_transform(y)
np.unique(y)
array([0, 1], dtype=int64)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.5,random_state = 1)

基分类器与集成投票器

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
clf_lr = LogisticRegression(penalty='l2',C=1000,random_state=0)
clf_dt = DecisionTreeClassifier(random_state=0)
clf_knn = KNeighborsClassifier(n_neighbors=1,p=2)

pipe1 = make_pipeline(StandardScaler(),clf_lr)
pipe2 = make_pipeline(StandardScaler(),clf_dt)
pipe3 = make_pipeline(StandardScaler(),clf_knn)

models = [('lr',pipe1),
          ('dt',pipe2),
          ('KNN',pipe3)]

ensembel = VotingClassifier(estimators=models,voting='soft')

分类结果(训练集)

from sklearn.model_selection import cross_val_score
all_model = [pipe1,pipe2,pipe3,ensembel]
clf_labels = ['LogisticRegression','DecisionTreeClassifier','KNeighborsClassifier','Ensemble']
for clf,label in zip(all_model,clf_labels):
    score = cross_val_score(estimator=clf,
                           X = X_train,
                           y=y_train,
                           cv = 10,
                           scoring = 'roc_auc')
    print( 'roc_auc: %0.2f (+/- %0.2f) [%s]' % (score.mean(),score.std(),label))
roc_auc: 0.98 (+/- 0.05) [LogisticRegression]
roc_auc: 0.93 (+/- 0.11) [DecisionTreeClassifier]
roc_auc: 0.93 (+/- 0.15) [KNeighborsClassifier]
roc_auc: 0.98 (+/- 0.05) [Ensemble]

不同模型的auc_roc曲线(测试集)

from sklearn.metrics import roc_curve 
from sklearn.metrics import auc 
colors = ['black','orange','blue', 'green']
linestyles = [':','--','-.','-']
plt.figure(figsize=(10,8))
for clf, label, clr, ls in zip (all_model, clf_labels, colors, linestyles):
    # assuming the label of the positive class is 1
    y_pred = clf.fit(X_train, y_train).predict_proba(X_test)[:,1]
    fpr, tpr, thresholds = roc_curve(y_true=y_test, y_score=y_pred)
    roc_auc = auc(x=fpr, y=tpr)
    plt.plot (fpr, tpr, color=clr, linestyle=ls, label='%s (auc = %0.3f)'%(label, roc_auc) )
    plt.legend (loc='lower right')
    plt.plot ([0,1], [0, 1],linestyle='--',color='gray',linewidth=2)
plt.xlim ([-0.1, 1.1])
plt.ylim([-0.1, 1.1])
plt.grid()
plt.xlabel ('False Positive Rate')
plt.ylabel ('True Positive Rate')
plt.show()

png

不同模型的分类边界

sc = StandardScaler() 
X_train_std =sc.fit_transform(X_train)
from itertools import product
x_min =X_train_std[:,0].min()-1
x_max =X_train_std[:,0].max() + 1
y_min =X_train_std[:,1].min()-1
y_max =X_train_std[:,1].max() + 1
xx, yy =np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))
f, axarr = plt.subplots (nrows=2, ncols=2,
                         sharex='col',
                         sharey='row',
                         figsize=(7, 5) )
for idx, clf, tt in zip(product([0, 1], [0, 1]), all_model, clf_labels):
    clf.fit(X_train_std, y_train)
    z= clf.predict(np.c_[xx.ravel(),yy.ravel()])
    z= z.reshape(xx.shape)
    axarr[idx[0],idx[1]].contourf(xx, yy, z, alpha=0.3)
    axarr[idx[0],idx[1]].scatter(X_train_std[y_train==0,0],
                                 X_train_std[y_train==0,1]
                                 , c='blue',
                                 marker='^'
                                 ,s=50)
    axarr[idx[0],idx[1]].scatter(X_train_std[y_train==1,0],
                                 X_train_std[y_train==1,1]
                                 , c='red',
                                 marker='o'
                                 ,s=50)
    axarr[idx[0],idx[1]].set_title(tt)
plt.show()

png


  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
加权投票集成学习是一种常用的集成学习,它通过将多个基分类器的预测结果进行加权平均或加权投票来得到最终的预测结果。其原理如下: 1. 基分类器训练:首先,我们需要训练多个基分类器。每个基分类器可以使用不同的算或者使用相同算的不同参数设置。通过使用不同的基分类器,可以增加模型的多样性,提高集成模型的泛化能力。 2. 预测结果融合:在测试阶段,每个基分类器对输入样本进行预测,并生成一个预测结果。这些预测结果可以是类别标签(如二分类问题中的0和1),也可以是概率值(如多分类问题中每个类别的概率)。然后,对这些预测结果进行加权平均或加权投票来得到最终的预测结果。 - 加权平均:对于回归问题或者概率预测问题,可以将每个基分类器的预测结果乘以一个权重,并将它们相加得到最终的预测结果。权重可以根据基分类器的性能进行分配,性能较好的基分类器可以分配较大的权重。 - 加权投票:对于分类问题,可以为每个基分类器分配一个权重,并根据基分类器的预测结果进行加权投票。最终的预测结果可以是得票最多的类别标签。 加权投票集成学习的优点在于能够结合多个基分类器的优势,提高模型的准确性和鲁棒性。同时,通过调整权重,可以对不同基分类器的贡献进行灵活控制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值