#机器学习之numpy基本知识#
1.numpy数组创建
函数:np.arange() np.array() .astype()转换数据类型
2.数据读取
np.loadtxt(“file_path”,delimiter="") delimiter参数定义按进行分割加载数据
3.索引和切片
example:数组t
t[:,:]取全部元素 t[2:,:]取从第三行开始的所有元素
t[[2,3],[3,2]]取3行4列和4行3列的特定元素(用于取不同行列的多个元素)
4.数组的拼接
np.vstack(t1,t2)竖直拼接
np.hstsck(t1,t2)水平拼接
5.常见数组
np.zeros(m,n)m行n列的全0数组
np.ones(m,n)m行n列的全1数组
np.eyes(m,n)m行n列的单位数组
6.数组元素的删改
直接使用索引进行赋值更改即可:t[2,3] = 4 将t中3行4列的元素改为数值4
删除使用t.drop()
7.获取数组中最大最小值
np.argmax(t,axis=0/1)
np.argmin(t,axis=0/1)
其中axis=0表示行中的最大最小值,axis=1表示列中的最大最小值
8.定义随机种子
意义:保证每次随机数一致,复现每次效果
np.random()定义随机数/数组
np.random.seed()定义随机种子
9.注意点
numpy中的copy和view :
a=b 和 a=b[:]view 操作中a和b相互影响,使用.copy()a\b相互不影响
一般复制操作最好前后名称一致:a = a[:]