自己dp是学得真的差
一.复习
首先用例题复习:Print Article
首先可以很简单地列出dp式:
然后就可以用斜率套了
首先我们自己定义有 j < k
且
经过一系列移项后就可以得到:
我们设
这样就变成了
这就是求斜率,所以就可以用单调队列了
注意要变成乘法。
这里有一个检验自己dp式是否列对的方法:要化成以上的形式,且不等式右边的常数一定是有单调性的(多道题的经验)
开始贴代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
const int MAXN = 500003;
int n , m , dp[MAXN] , que[MAXN] , head , tail , sum[MAXN] , a[MAXN];
int qy( int i ){
return dp[i] + sum[i] * sum[i];
}
int main()
{
while( ~scanf( "%d%d" , &n , &m ) ){
sum[0] = 0;
head = tail = 0;
memset( dp , 0 , sizeof( dp ) );memset( que , 0 , sizeof( que ) );
for( int i = 1 ; i <= n ; i ++ ){
scanf( "%d" , &a[i] );
sum[i] = sum[i-1] + a[i];
}
head = 1 , tail = 1;
que[1] = 0;
for( int i = 1 ; i <= n ; i ++ ){
while( head < tail && qy( que[head + 1] ) - qy( que[head] ) < 2 * sum[i] *( sum[que[head+1]]-sum[que[head]]) )
head ++;
dp[i] = ( sum[i] - sum[que[head]] ) * ( sum[i] - sum[que[head]] ) + dp[que[head]] + m ;
while( head < tail && ( qy( i ) - qy( que[tail] ) ) * ( sum[que[tail]] - sum[que[tail-1]]) <= ( qy( que[tail] ) - qy( que[tail-1] ) ) * ( sum[i] - sum[que[tail]]) )
tail --;
que[++tail] = i;
}
printf( "%d\n" , dp[n] );
}
return 0;
}
二.举一反三
会持续更新的
这是一道延迟入队的题:K-Anonymous Sequence
耽误老娘一下午...
看了题目后其实显见连续的才能保证最小
dp式子是可以秒出的:
a[]就是输入的数组,sum是前缀和
跳过化简,但是这道题有一个点是至少要有k个元素一组,所以点i转移的点最大的点是 i- k
所以当轮到i时,至少转移点要比i-k小或等于,那么我们在把i-1求完后维护凸包的时候,就要用i-k去入队,维护
好了,代码就不亮了