使用keras构建复杂的模型——Keras functional API 使用 Keras functional API构建复杂的模型拓扑,对应官网的https://tensorflow.google.cn/beta/guide/keras/overview#the_functional_api先定义层inputs = tf.keras.Input(shape=(32,)) # Returns an input placeholder# A layer ...
CSDN-markdown编辑器 这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...
@tf.function 将python的函数编译成tensorflow的图结构,所以可以方便的直接使用python的语法去写深度学习的一些函数代码易于将模型导出为GraphDef+checkpoint和saveModel使得eager exection默认打开。如果不使用@tf.function,虽然可以使用eager exection去写代码,但是模型的中间结果无法保存,所以无法进行预测tf1.0的代码可以经过...
transofrm The Illustrated Transformer Discussions:Hacker News (65 points, 4 comments), Reddit r/MachineLearning (29 points, 3 comments)Translations: Chinese (Simplified), KoreanWatch: MIT’s Deep...
tf.nn.embedding_lookup import tensorflow as tfimport numpy as nptf.enable_eager_execution()emb = [ [1, 1, 1], [2, 2, 2], [3, 3, 3],]emb = np.array(emb)ids = [ [1, 1], [2, 2],]ids = np.array(i...
tf.reshape tf.enable_eager_execution()zeros = tf.zeros(shape=[2, 3, 4])print(zeros)tf.Tensor([[[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]]], shape=(2, 3,...
tf.concat import tensorflow as tftf.enable_eager_execution()embedding = []embedding.append([ [1, 1], [2, 2]])embedding.append([ [3, 3, 3], [4, 4, 4]])print(embedding)[[[1, 1], [2, 2]]...
np.random.choice # 从3个数a,b,c里面随机的选择1个。每个字母被选择的概率是pchoice = np.random.choice(['a', 'b', 'c'], size=1, p=[0.1, 0.3, 0.6])print(choice)结果为'c'
tf.split import tensorflow as tftf.enable_eager_execution()x = tf.random_normal(shape=[1, 3, 1])print(x)print('"""""""""')x = tf.reshape(x, shape=(-1, 3))print(x)print('"""""""""')# 用于得到一個tensor的lis...