在tensorflow里面使用sklearn得到召回率等指标

#%%
import numpy as np
import pandas as pd
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow import keras
#%%
seed = 7
np.random.seed(seed)
#%%
date = pd.read_csv('E:\MyJupyterCode\Beifeng\ml\回归算法\课堂代码\datas\iris.data').to_numpy()
x = date[:,0:4]
y = date[:,4]
encoder = LabelEncoder()
y = encoder.fit_transform(y)
y = y.reshape(len(y),1)
y = sklearn.preprocessing.OneHotEncoder().fit_transform(y).toarray()
X_train, X_test, y_train, y_test = train_test_split(
     x, y, test_size=0.33, random_state=42,shuffle=True)
y[0]
#%%
def create_baseline():
    model = keras.Sequential()
    model.add(keras.layers.Dense(10,activation='relu',input_shape=(4,))),
    model.add(keras.layers.Dense(3,activation='relu')),
    model.compile(optimizer=keras.optimizers.Adam(),
                  loss=keras.losses.categorical_crossentropy,
                  metrics=['accuracy'])
    return model
#%%
model = create_baseline()
model.fit(X_train,y_train,epochs=10,batch_size=20)

#%%
y_predict = model.predict(X_test)
y_predict
#%%
y_predict_class= np.argmax(y_predict,axis=1)
y_test_class = np.argmax(y_test,axis=1)
y_test_class[0]
y_predict_class[0]
# 下面则表示如何使用
from sklearn.metrics import classification_report
report = classification_report(y_test_class,y_predict_class)
print(report)
#%%


  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值