飞桨PaddleHub实现皮影戏

一、项目介绍

通过PaddleHub提供的人体骨骼关键点检测预训练模型,并对这些关键点进行连接,从而形成了人体姿态,然后我们将皮影素材映射到人体姿态身上,让皮影跟随人体姿态进行运动,就达到“皮影戏”的效果。

二、具体步骤

1、安装依赖库以及模型
首先通过pip安装PaddlePaddle和PaddleHub,安装完成后,就可以通过PaddleHub来安装人体骨骼关键点检测模型。
PaddlePaddle

python -m pip install paddlepaddle==2.0.2 -i https://mirror.baidu.com/pypi/simple

这里的是windows cpu版本,其他版本请参考飞桨官网
安装PaddleHub

pip install PaddleHub

导入人体骨骼关键节点检测模型

hub install human_pose_estimation_resnet50_mpii==1.1.1

2、设置目录和资源
所有资源都在work目录下
①work/imgs 目录下是从网上找的图片资源
②work/output_pose 是人体骨骼关键点识别后的图片目录
③work/shadow_play_material 是皮影的素材图片
④work/mp4_img 是视频导出的图片
⑤work/mp4_img_analysis 视频图片分析结果

3、检测图片骨骼节点

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np


def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size, size))
    plt.axis("off")
    plt.imshow(im)


def img_show_bgr(image, size=8):
    '''
        cv读取的图片显示
    '''
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size, size))
    plt.imshow(image)

    plt.axis("off")
    plt.show()


pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['text5.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)

运行上面的代码,就可以得到每个人体骨骼关键点的具体坐标,我们通过可视化查看前面图片分析出的结果。
4、拼接皮影素材
首先要解析人体各个骨骼关键点的位置信息,通过关节点的信息计算皮影的肢体位置,和旋转方向,从而达到肢体同步。

import os
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt
from matplotlib.image import imread
import numpy as np

def show_img(img_path, size=8):
    '''
        文件读取图片显示
    '''
    im = imread(img_path)
    plt.figure(figsize=(size,size))
    plt.axis("off")
    plt.imshow(im)
def img_show_bgr(image,size=8):
    '''
        cv读取的图片显示
    '''
    image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
    plt.figure(figsize=(size,size))
    plt.imshow(image)
    
    plt.axis("off")
    plt.show() 

show_img('work/imgs/body01.jpg')
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
result = pose_estimation.keypoint_detection(paths=['test5.jpg'], visualization=True, output_dir="work/output_pose/")
print(result)

def get_true_angel(value):
    '''
    转转得到角度值
    '''
    return value/np.pi*180

def get_angle(x1, y1, x2, y2):
    '''
    计算旋转角度
    '''
    dx = abs(x1- x2)
    dy = abs(y1- y2)
    result_angele = 0
    if x1 == x2:
        if y1 > y2:
            result_angele = 180
    else:
        if y1!=y2:
            the_angle = int(get_true_angel(np.arctan(dx/dy)))
        if x1 < x2:
            if y1>y2:
                result_angele = -(180 - the_angle)
            elif y1<y2:
                result_angele = -the_angle
            elif y1==y2:
                result_angele = -90
        elif x1 > x2:
            if y1>y2:
                result_angele = 180 - the_angle
            elif y1<y2:
                result_angele = the_angle
            elif y1==y2:
                result_angele = 90
    
    if result_angele<0:
        result_angele = 360 + result_angele
    return result_angele

def rotate_bound(image, angle, key_point_y):
    '''
    旋转图像,并取得关节点偏移量
    '''
    #获取图像的尺寸
    (h,w) = image.shape[:2]
    #旋转中心
    (cx,cy) = (w/2,h/2)
    # 关键点必须在中心的y轴上
    (kx,ky) = cx, key_point_y
    d = abs(ky - cy)
    
    #设置旋转矩阵
    M = cv2.getRotationMatrix2D((cx,cy), -angle, 1.0)
    cos = np.abs(M[0,0])
    sin = np.abs(M[0,1])
    
    # 计算图像旋转后的新边界
    nW = int((h*sin)+(w*cos))
    nH = int((h*cos)+(w*sin))
    
    # 计算旋转后的相对位移
    move_x = nW/2 + np.sin(angle/180*np.pi)*d 
    move_y = nH/2 - np.cos(angle/180*np.pi)*d
    
    # 调整旋转矩阵的移动距离(t_{
   x}, t_{
   y})
    M[0,2] += (nW/2) - cx
    M[1,2] += (nH/2) - cy

    return cv2.warpAffine(image,M,(nW,nH)), int(move_x), int(move_y)

def get_distences(x1, y1, x2, y2):
    return ((x1-x2)**2 + (y1-y2)**2)**0.5
def append_img_by_sk_points(img, append_img_path, key_point_y, first_point, second_point, append_img_reset_width=None,
                                        append_img_max_height_rate=1, middle_flip=False, append_img_max_height=None):
    '''
    将需要添加的肢体图片进行缩放
    '''
    append_image = cv2.imdecode(np.fromfile(append_img_path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)

    # 根据长度进行缩放
    sk_height = int(get_distences(first_point[0], first_point[1], second_point[0], second_point[1])*append_img_max_height_rate)
    # 缩放制约
    if append_img_max_height:
        sk_height = min(sk_height, append_img_max_height)

    sk_width = int(sk_height/append_image.shape[0]*append_image.shape[1]) if append_img_reset_width is None else int(append_img_reset_width)
    if sk_width <= 0:
        sk_width = 1
    if sk_height <= 0:
        sk_height = 1

    # 关键点映射
    key_point_y_new = int(key_point_y/append_image.shape[0]*append_image.shape[1])
    # 缩放图片
    append_image = cv2.resize(append_image, (sk_width, sk_height))

    img_height, img_width, _ = img.shape
    # 是否根据骨骼节点位置在 图像中间的左右来控制是否进行 左右翻转图片
    # 主要处理头部的翻转, 默认头部是朝左
    if middle_flip:
        middle_x = int(img_width/2)
        if first_point[0] < middle_x and second_point[0] < middle_x:
            append_image = cv2.flip(append_image, 1)

    # 旋转角度
    angle = get_angle(first_point[0], first_point[1], second_point[0], second_point[1])
    append_image, move_x, move_y = rotate_bound(append_image, angle=angle, key_point_y=key_point_y_new)
    app_img_height, app_img_width, _ = append_image.shape
    
    zero_x = first_point[0] - move_x
    zero_y = first_point[1] - move_y

    (b, g, r) = cv2.split(append_image) 
    for i in range(0, r.shape[0]):
        for j in 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值