蓝桥杯算法训练 幂方分解JAVA

问题描述
  任何一个正整数都可以用2的幂次方表示。例如:
  137=27+23+20
  同时约定方次用括号来表示,即ab 可表示为a(b)。
  由此可知,137可表示为:
  2(7)+2(3)+2(0)
  进一步:7= 22+2+20 (21用2表示)
  3=2+20
  所以最后137可表示为:
  2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:
  1315=210 +28 +25 +2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
  输入包含一个正整数N(N<=20000),为要求分解的整数。
输出格式
  程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)

思路都在注释中


import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner read = new Scanner(System.in);
		int n = read.nextInt();
		read.close();
		f(n);
	}
	public static void f(int n)
	{
		if(n==0)
		{
			System.out.print("0");
			return;
		}
		//首先我们创建一个字符数组用来存放该数字的二进制
		char []ch = Integer.toBinaryString(n).toCharArray();
		//看题目可以知道第一个数字前面是没有加号的,所以我们创建一个boolean来标记是不是第一个数字
		boolean one = true;
		for(int i=0;i<ch.length;i++)
		{
			if(ch[i]=='1')//如果不为零
			{
				if(one)//并且使第一个数字
				{
					if(ch.length-i-1 == 1)//如果是2的1次方,直接输出2
					{
						System.out.print("2");
					}
					else
					{
						//如果不是1次方
						System.out.print("2(");
						f(ch.length-1-i);//这个ch.length-1-i次方需要进一步分解,所以递归
						System.out.print(")");
					}
					one = false;//后面的就要加加号了
				}
				else
				{
					if(ch.length-i-1 == 1)//如果是2的1次方,直接输出2
					{
						System.out.print("+2");
					}
					else
					{
						//如果不是1次方
						System.out.print("+2(");
						f(ch.length-1-i);//这个ch.length-1-i次方需要进一步分解,所以递归
						System.out.print(")");
					}
				}
			}
		}
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值