小明冒充X星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。
假设城堡地面是 n x n 个方格。【如图1.png】所示。
按习俗,骑士要从西北角走到东南角。
可以横向或纵向移动,但不能斜着走,也不能跳跃。
每走到一个新方格,就要向正北方和正西方各射一箭。
(城堡的西墙和北墙内各有 n 个靶子)
同一个方格只允许经过一次。但不必做完所有的方格。
如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?
有时是可以的,比如图1.png中的例子。
本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入:
第一行一个整数N(0<N<20),表示地面有 N x N 个方格
第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出:
一行若干个整数,表示骑士路径。
为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3…
比如,图1.png中的方块编号为:
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
示例:
用户输入:
4
2 4 3 4
4 3 3 3
程序应该输出:
0 4 5 1 2 3 7 11 10 9 13 14 15
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class for7_4 {
static int n = 0;
static List<Integer> list = new ArrayList<Integer>();
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner read = new Scanner(System.in);
n = read.nextInt();
int[][] visit = new int[n][n];
int[] markX = new int[n];
int[] markY = new int[n];
int[][] next = {{-1,0},{1,0},{0,1},{0,-1}};
for(int i=0;i<n;i++)
{
markX[i] = read.nextInt();
}
for(int i=0;i<n;i++)
{
markY[i] = read.nextInt();
}
markX[0] -= 1;//起点的操作
markY[0] -= 1;
visit[0][0] = 1;
list.add(0);
dfs(0,0,markX,markY,visit,next);
read.close();
}
static void dfs(int x,int y,int[] markX,int[] markY,int[][] visit,int[][] next)
{
if(x==n-1 && y==n-1)
{
for(int i=0;i<n;i++)
{
if(markX[i]!=0 || markY[i]!=0)
return;
}
for(int i=0;i<list.size();i++)
{
System.out.print(list.get(i)+" ");
}
}
for(int i=0;i<4;i++)
{
int nextX = x+next[i][0];
int nextY = y+next[i][1];
if(!(nextX<0 || nextY<0 || nextX>=n || nextY>=n || visit[nextX][nextY] == 1 || markX[nextX]<=0 || markY[nextY]<=0))
{
markX[nextX] -= 1;
markY[nextY] -= 1;
visit[nextX][nextY] = 1;
list.add(num(nextX,nextY));
dfs(nextX,nextY,markX,markY,visit,next);
markX[nextX] += 1;
markY[nextY] += 1;
visit[nextX][nextY] = 0;
list.remove(list.size()-1);
}
}
}
static int num(int x,int y)
{
return y*n +x;
}
}