LeetCode-50-Pow(x, n)

在这里插入图片描述

1、递归

我们最简单的思路就是使用递归,每次就让x乘上Pow(x, n-1)的值。但是这样做的缺点在于递归时间过长会导致超时,因此我们可以使用快速幂进行优化。

快速幂的思想在于我们在求x的N次幂时,不使用 x ∗ x N − 1 x*x^{N-1} xxN1,而是使用 x N / 2 ∗ x N / 2 x^{N/2}*x^{N/2} xN/2xN/2从而减少递归次数至 O ( l o g N ) O(logN) O(logN)

class Solution {
public:
    double quickMul(double x, long long N) {
        if (N == 0) {
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y * y : y * y * x;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

2、迭代

我们可以将 x n x^n xn拆成多个 x 2 k x^{2^k} x2k项之和,例如 x 7 7 = x 1 ∗ x 4 ∗ x 8 ∗ x 64 x^77=x^1*x^4*x^8*x^{64} x77=x1x4x8x64,而77的二进制表示恰好为 1001101 1001101 1001101,其中二进制上每个1的位置表示了有哪些 x 2 k x^{2^k} x2k需要相加,我们可以基于这一特点来设计迭代过程。

class Solution {
public:
    double quickMul(double x, long long N) {
        double ans = 1.0;
        // 贡献的初始值为 x
        double x_contribute = x;
        // 在对 N 进行二进制拆分的同时计算答案
        while (N > 0) {
            if (N % 2 == 1) {
                // 如果 N 二进制表示的最低位为 1,那么需要计入贡献
                ans *= x_contribute;
            }
            // 将贡献不断地平方
            x_contribute *= x_contribute;
            // 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
            N /= 2;
        }
        return ans;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值