程序设计思维 D - 数据中心(最小生成树,Kruskal算法)

题目

在这里插入图片描述

Input
4
5
1
1 2 3
1 3 4
1 4 5
2 3 8
3 4 2

Output
4

Note在这里插入图片描述

思路

这道题可以转化成最小生成树来解决。
由题可知,每个节点要找一条最短的路到达根节点。不难想象,所有节点到根节点的最短路的集合是一棵最小生成树。
所以,在输入完图后,求这个图的最小生成树,同时记录这个最小生成树中出现的最长的边,该边即为题目所求。
最小生成树所用的Kruskal算法与上一题所用的没有太大区别。

代码

#include <iostream>
#include <algorithm>
#define EMAX 500500
#define VMAX 50050

using namespace std;

int n, m, root;
int ans;

int par[VMAX];

// Edge[0]要用
struct Edge {
	int u, v, w;
	bool operator<(const Edge& e) const
	{
		return w < e.w;
	}
}Edges[EMAX];
int edgeNum;
// Edge[edgeNum]为空

void addEdge(int u, int v, int w)
{
	Edges[edgeNum].u = u;
	Edges[edgeNum].v = v;
	Edges[edgeNum].w = w;
	edgeNum++;
}

void init()
{
	ans = 0;
	for (int i = 0; i <= n; i++)
		par[i] = i;
}

int find(int x)
{
	return par[x] == x ? x : par[x] = find(par[x]);
}

void unite(int x, int y)
{
	int xPar = find(x);
	int yPar = find(y);

	if (xPar != yPar) par[xPar] = yPar;

	return;
}

void Kruskal()
{
	init();
	sort(Edges, Edges + edgeNum);
	int cnt = 0;
	for (int i = 0; i < edgeNum; i++) {
		if (find(Edges[i].u) != find(Edges[i].v)) {
			unite(Edges[i].u, Edges[i].v);
			cnt++;
			ans = max(ans, Edges[i].w);
		}
		if (cnt == n - 1) break;
	}
}

int main()
{
	edgeNum = 0;
	cin >> n >> m >> root;
	for (int i = 0; i < m; i++) {
		int u, v, w;
		cin >> u >> v >> w;
		addEdge(u, v, w);
		addEdge(v, u, w);
	}

	Kruskal();

	cout << ans << endl;

	return 0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值