题目
Input
4
5
1
1 2 3
1 3 4
1 4 5
2 3 8
3 4 2
Output
4
Note
思路
这道题可以转化成最小生成树来解决。
由题可知,每个节点要找一条最短的路到达根节点。不难想象,所有节点到根节点的最短路的集合是一棵最小生成树。
所以,在输入完图后,求这个图的最小生成树,同时记录这个最小生成树中出现的最长的边,该边即为题目所求。
最小生成树所用的Kruskal算法与上一题所用的没有太大区别。
代码
#include <iostream>
#include <algorithm>
#define EMAX 500500
#define VMAX 50050
using namespace std;
int n, m, root;
int ans;
int par[VMAX];
// Edge[0]要用
struct Edge {
int u, v, w;
bool operator<(const Edge& e) const
{
return w < e.w;
}
}Edges[EMAX];
int edgeNum;
// Edge[edgeNum]为空
void addEdge(int u, int v, int w)
{
Edges[edgeNum].u = u;
Edges[edgeNum].v = v;
Edges[edgeNum].w = w;
edgeNum++;
}
void init()
{
ans = 0;
for (int i = 0; i <= n; i++)
par[i] = i;
}
int find(int x)
{
return par[x] == x ? x : par[x] = find(par[x]);
}
void unite(int x, int y)
{
int xPar = find(x);
int yPar = find(y);
if (xPar != yPar) par[xPar] = yPar;
return;
}
void Kruskal()
{
init();
sort(Edges, Edges + edgeNum);
int cnt = 0;
for (int i = 0; i < edgeNum; i++) {
if (find(Edges[i].u) != find(Edges[i].v)) {
unite(Edges[i].u, Edges[i].v);
cnt++;
ans = max(ans, Edges[i].w);
}
if (cnt == n - 1) break;
}
}
int main()
{
edgeNum = 0;
cin >> n >> m >> root;
for (int i = 0; i < m; i++) {
int u, v, w;
cin >> u >> v >> w;
addEdge(u, v, w);
addEdge(v, u, w);
}
Kruskal();
cout << ans << endl;
return 0;