程序设计思维 C - TT 的美梦(SPFA算法)

题目

这一晚,TT 做了个美梦!
在梦中,TT 的愿望成真了,他成为了喵星的统领!喵星上有 N 个商业城市,编号 1 ~ N,其中 1 号城市是 TT 所在的城市,即首都。
喵星上共有 M 条有向道路供商业城市相互往来。但是随着喵星商业的日渐繁荣,有些道路变得非常拥挤。正在 TT 为之苦恼之时,他的魔法小猫咪提出了一个解决方案!TT 欣然接受并针对该方案颁布了一项新的政策。
具体政策如下:对每一个商业城市标记一个正整数,表示其繁荣程度,当每一只喵沿道路从一个商业城市走到另一个商业城市时,TT 都会收取它们(目的地繁荣程度 - 出发地繁荣程度)^ 3 的税。
TT 打算测试一下这项政策是否合理,因此他想知道从首都出发,走到其他城市至少要交多少的税,如果总金额小于 3 或者无法到达请悄咪咪地打出 ‘?’。

Input
第一行输入 T,表明共有 T 组数据。(1 <= T <= 50)
对于每一组数据,第一行输入 N,表示点的个数。(1 <= N <= 200)
第二行输入 N 个整数,表示 1 ~ N 点的权值 a[i]。(0 <= a[i] <= 20)
第三行输入 M,表示有向道路的条数。(0 <= M <= 100000)
接下来 M 行,每行有两个整数 A B,表示存在一条 A 到 B 的有向道路。
接下来给出一个整数 Q,表示询问个数。(0 <= Q <= 100000)
每一次询问给出一个 P,表示求 1 号点到 P 号点的最少税费。

Output
每个询问输出一行,如果不可达或税费小于 3 则输出 ‘?’。

Sample Input
2
5
6 7 8 9 10
6
1 2
2 3
3 4
1 5
5 4
4 5
2
4
5
10
1 2 4 4 5 6 7 8 9 10
10
1 2
2 3
3 1
1 4
4 5
5 6
6 7
7 8
8 9
9 10
2
3 10

Sample Output
Case 1:
3
4
Case 2:
?
?

思路

一、SPFA算法
SPFA算法是一种改良的Bellman-Ford 算法。
1.Bellman-Ford 算法
前面学的Floyd算法和Dijkstra算法都有它的局限性:
Floyd算法解决多源最短路径问题,对于解决单源最短路径问题显得有些“浪费”。
Dijkstra算法无法解决存在负权边的单源最短路径问题。
而Bellman-Ford 算法可以解决存在负权边的单源最短路径问题。
假设给定n个顶点、m条边、源点为s,使用Bellman-Ford 算法需要用到的2个一维数组:
dis[i]:从点s到点i的最短距离
pre[i] = k:从点s到点i之前要经过点k
Bellman-Ford 算法的主体:

//初始化
for (int i = 1; i <= n; i++) {
	dis[i] = Inf;
	pre[i] = 0;
}
//Bellman-Ford算法
dis[s] = 0;
for (int j = 1; j < n; j++) {
	for (int i = 1; i <= m; i++) {
		if (dis[Edges[i].v] > dis[Edges[i].u] + Edges[i].w) {
			dis[Edges[i].v] = dis[Edges[i].u] + Edges[i].w;
			pre[Edges[i].v] = Edges[i].u;
		}
	}
}

时间复杂度为O(nm)。
2.SPFA算法
SPFA算法是一种对Bellman-Ford 算法进行改良的算法。这个算法增加了1个一维数组和1个队列:
队列q:存放被成功松弛的点
inq[i] = 0/1:点i在/不在队列q中
SPFA算法的主体:

//初始化
for (int i = 1; i <= N; i++) {
	dis[i] = Inf;
	pre[i] = 0;
	inq[i] = 0;
}
//SPFA算法
dis[s] = 0;
q.push(s);
inq[s] = 1;
while (!q.empty()) {
	int u = q.front();
	q.pop();
	inq[u] = 0;
	for (int i = Head[u]; i; i = Edges[i].next) {
		int v = Edges[i].to;
		int w = Edges[i].weight;

		if (dis[v] > dis[u] + w) {
			dis[v] = dis[u] + w;
			pre[v] = u;
			if (!inq[v]) {
				q.push(v);
				inq[v] = 1;
			}
		}
	}
}

时间复杂度为O(km),k是一个小于n 的常数,但是在特殊情况下k可能很大 。
3.改进的SPFA算法
虽然图可以存在负权边,但如果图存在负权环路,则会陷入在负权环路中,无法找到最短路径。
为了使算法能够判断是否存在负权环路,在改进的SPFA算法中,增加了1个一维数组:
cnt[i] = k:点i加入队列后最短路径有k条边
当cnt[i] = n时,说明点i加入队列后最短路径有n条边,但实际上最短路径不应该有超过(n-1)条边,故存在负权环路,无法找到最短路径。
改进的SPFA算法的主体:

//初始化
for (int i = 1; i <= N; i++) {
	dis[i] = Inf;
	pre[i] = 0;
	inq[i] = 0;
	cnt[i] = 0;
}
//改进的SPFA算法
dis[s] = 0;
inq[s] = 1;
q.push(s);
while (!q.empty()) {
	int u = q.front();
	q.pop();
	inq[u] = 0;
	for (int i = Head[u]; i; i = Edges[i].next) {
		int v = Edges[i].to;
		int w = Edges[i].weight;

		if (dis[v] > dis[u] + w) {
			cnt[v] = cnt[u] + 1;
			if (cnt[v] >= n) {
				//存在负权环路
			}
			dis[v] = dis[u] + w;
			pre[v] = u;
			if (!inq[v]) {
				q.push(v);
				inq[v] = 1;
			}
		}
	}
}

二、解题
由题可知,图可能存在负权边和负权环路,故需要用到改进的SPFA算法。
同时,还需要对算法作进一步地改进:
当cnt[i]=n时,说明点i及其所在的连通分量中的所有点都无法找到最短路径(即不可达),则将这些点都标记起来,如果后面有询问到这些点,则直接输出“?”,以减少询问的时间开销。
进一步改进:
增加1个一维数组:
visit[i] = false/true:点i可达/不可达
当cnt[i]=n时,使用DFS算法,将点i及其所在的连通分量中的所有点的visit都标记为true。

代码

#include <iostream>
#include <queue>
#include <cstring>
#include <cmath>

#define Inf 10000000
#define MAX_V 100000
#define MAX_E 100000

using namespace std;

int T;
int N;
int a[MAX_V];
int M;
int A, B;
int Q, P;

struct node
{
	int to;
	int weight;
	int next;
}Edges[MAX_E];
int Head[MAX_V];
int tot = 0;

int dis[MAX_V];
int inq[MAX_V];
int cnt[MAX_V];

bool visit[MAX_V];

queue<int> q;

void add(int u, int v, int w)
{
	tot++;
	Edges[tot].to = v;
	Edges[tot].weight = w;
	Edges[tot].next = Head[u];
	Head[u] = tot;
}

void DFS(int v)
{
	for (int i = Head[v]; i; i = Edges[i].next) {
		int to = Edges[i].to;
		if (!visit[to]) {
			visit[to] = true;
			DFS(to);
		}
	}
}
void SPFA(int s)
{
	for (int i = 1; i <= N; i++) {
		dis[i] = Inf;
	}
	dis[s] = 0;
	inq[s] = 1;

	q.push(s);
	while (!q.empty()) {
		int u = q.front();
		q.pop();
		inq[u] = 0;
		for (int i = Head[u]; i; i = Edges[i].next) {
			int v = Edges[i].to;
			int w = Edges[i].weight;

			if (visit[v]) continue;

			if (dis[v] > dis[u] + w) {
				dis[v] = dis[u] + w;
				cnt[v] = cnt[u] + 1;
				if (cnt[v] >= N) {
					DFS(v);
					visit[v] = true;
				}
				if (!inq[v]) {
					q.push(v);
					inq[v] = 1;
				}
			}
		}
	}
}

void init()
{
	memset(Head, 0, sizeof(Head));
	memset(inq, 0, sizeof(inq));
	memset(cnt, 0, sizeof(cnt));
	memset(a, 0, sizeof(a));
	memset(visit, false, sizeof(visit));
	tot = 0;
}

int main()
{
	scanf("%d", &T);

	 for (int t = 1; t <= T; t++) {
		init();

		scanf("%d", &N);

		for (int i = 1; i <= N; i++) scanf("%d", &a[i]);
		
		scanf("%d", &M);

		for (int i = 0; i < M; i++) {
			scanf("%d %d", &A, &B);
			int w = pow(a[B] - a[A], 3);
			add(A, B, w);
		}

		SPFA(1);

		scanf("%d", &Q);
		
		printf("Case %d:\n", t);
		for (int i = 0; i < Q; i++) {
			scanf("%d", &P);
			if (dis[P] == Inf || visit[P] || dis[P] < 3) printf("?\n");
			else printf("%d\n", dis[P]);
		}
	 }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值