E - Ricochet Robots( dfs+hash优化 )
题目链接:Gym - 100783E
题意:
w*h的二维地图中,n个机器人,一个( 或者多个 )特定的点。 每次操作可以指定一个机器人向上下左右四个方向其一运动,直到碰到边界,其他机器人才停下。问能否在k次操作前,某个机器人到达特殊点。输出最少操作数或者NO
‘W’表示墙, ‘1’,'2','3'.'4'表示4个机器人, ‘X’表示特定的点, ‘ . ’表示空地。
1 ≤ n ≤ 4 ,max(w, h) ≤ 10 , 1<= k <=10
思路:dfs枚举所有可能,最多4个机器人,地图大小10*10,10次操作的复杂度应该是O( pow(4*4, 10) ) 肯定超时。
但是感觉四个机器人能去的地方很有限,所以对四个机器人的位置hash成一个整数,存一下状态,就可以过了,不优化样例也过不去。
代码:
#include <bits/stdc++.h>
using namespace std;
struct node {
int x,y;
}robot[10];
int nxt[4][2] = {0,1,0,-1,1,0,-1,0};
char mp[15][15];
int via[15][15];
unordered_map<long long,int> dp;
int tot,n,m,limit,ans;
void dfs( int pos ) // 10*100*100
{
if ( pos>ans ) return ;
if ( pos>=limit ) return;
long long hash_now=pos;
for ( int i=1; i<=tot; i++ ) {
hash_now = hash_now*10+robot[i].x;
hash_now = hash_now*10+robot[i].y;
}
if ( dp[hash_now] ) return ;
for ( int i=1; i<=tot; i++ ) {
for ( int j=0; j<4; j++ ) {
int lastx = robot[i].x;
int lasty = robot[i].y;
while ( 1 ) {
int xx = robot[i].x+nxt[j][0];
int yy = robot[i].y+nxt[j][1];
if ( xx<0||yy<0||xx>=n||yy>=m||via[xx][yy]==1 ) {
break ;
}
robot[i].x = xx;
robot[i].y = yy;
};
if ( mp[ robot[i].x ][ robot[i].y ]=='X' && i==1 ) ans=min(ans,pos+1);
via[lastx][lasty] = 0;
via[robot[i].x][robot[i].y] = 1;
dfs(pos+1);
via[robot[i].x][robot[i].y] = 0;
via[lastx][lasty] = 1;
robot[i].x=lastx; robot[i].y=lasty;
}
}
dp[hash_now]=1;
}
int main()
{
//cout << pow(8,10);
scanf("%d %d %d %d",&tot,&m,&n,&limit);
ans = 100;
for ( int i=0; i<n; i++ ) {
getchar();
for ( int j=0; j<m; j++ ) {
scanf("%c",&mp[i][j]);
if ( mp[i][j]>='1' && mp[i][j]<='4' ) {
int p = mp[i][j]-'0';
robot[p].x=i; robot[p].y=j;
via[i][j] = 1;
}
else if ( mp[i][j]=='W' ) via[i][j]=1;
}
}
dfs(0);
if ( ans==100 ) printf("NO SOLUTION\n");
else printf("%d\n",ans);
return 0;
}
/*
2 5 4 6
.2...
...W.
WWW..
.X.1.
*/