GAN基础知识及代码

GAN也叫做生成对抗网络,分为两部分,一个是生成网络G,一个是对抗网络D。生成网络和对抗网络进行竞争,生成模型可以被认为是造假者,他们试图制造假币并在不被发现的情况下使用它,而鉴别模型类似于警察,视图发现假币。在这个游戏中,竞争促使两个团队改进他们的方法,直到冒充的产品和正品无法区分。

生成模型和判别模型都是多层感知器。

噪声就是随机生成的数,通过生成器随机生成一张图。(所以生成器只能随机生成图像,不能指定一些条件)

判别器的作用是尽可能的把真实数据集和生成数据集区分开,对于真实数据希望输出1,对于生成数据希望输出0。

相反,生成器希望判别器读入生成数据,输出1。

损失函数:

简化一点就是 D(x) +( 1-D(G(z)) ) , log是单调递增函数,此处的作用是放大损失。

对于生成器G,希望这个函数尽可能小,即D(x)接近0,1-D(G(z))接近0,即D(G(z))接近1.  事实上生成器不管D(x)是否是0,只要确保D(G(z))接近1,即生成的图像判别器判成了真实图像。

标准代码 - (pytorch)

在MNIST手写数字数据集上训练。

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms

1. 数据准备

对真实数据做归一化(-1,1),gan要求的,因为生成器生成的数据是(-1,1),保持两个数据分布一样

transform = transforms.Compose([
    transforms.ToTensor(),     # 归一化为0~1
    transforms.Normalize(0.5,0.5) # 归一化为-1~1
])
train_ds = torchvision.datasets.MNIST('datasets',  # 下载到那个目录下
                                      train=True,
                                      transform=transform,
                                      download=True)
dataloader = torch.utils.data.DataLoader(train_ds, batch_size=64,shuffle=True)
imgs,_ = next(iter(dataloader))
imgs.shape
# torch.Size([64, 1, 28, 28])

2. 定义生成器

输入是长度100的噪声z(正态分布随机数)
输出为(1,28,28)的图片,和MNIST数据集保持一致
Linear1: 100->256
Linear2: 256->512
Linear3: 512->2828
reshape: 28
28->(1,28,28)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__() # 继承父类
        self.main = nn.Sequential(
            nn.Linear(100,256), nn.ReLU(),
            nn.Linear(256,512), nn.ReLU(),
            nn.Linear(512,28*28), 
            nn.Tanh()  # 最后必须用tanh,把数据分布到(-1,1)之间
        )
    def forward(self, x):  # x表示长度为100的噪声输入
        img = self.main(x)
        img = img.view(-1,28,28,1) # 方便等会绘图
        return img

3. 定义判别器

输入为(1,28,28)的mnist图片
输出为二分类的概率,使用sigmoid激活,范围为0~1
BCEloss计算交叉熵损失
判别器推荐使用LeakReLU激活

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator,self).__init__()
        self.main = nn.Sequential(
            nn.Linear(28*28,512),
            nn.LeakyReLU(), # x小于零是是一个很小的值不是0,x大于0是还是x
            nn.Linear(512,256),
            nn.LeakyReLU(),
            nn.Linear(256,1),
            nn.Sigmoid() # 保证输出范围为(0,1)的概率
        )
    def forward(self, x): # x表示28*28的mnist图片
        img = x.view(-1,28*28)
        img = self.main(img)
        return img

4. 初始化模型、优化器、损失函数

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('training on ',device)
# 模型
gen = Generator().to(device)
dis = Discriminator().to(device)
# 优化器
g_opt = torch.optim.Adam(gen.parameters(),lr=0.0001)
d_opt = torch.optim.Adam(dis.parameters(),lr=0.0001)
# 损失
loss = torch.nn.BCELoss()

5. 绘图函数

随时看到生成器生成的图像

def gen_img_plot(model, test_input):
    prediction = np.squeeze(model(test_input).detach().cpu().numpy())
    fig = plt.figure(figsize=(4,4))
    for i in range(16):
        plt.subplot(4,4,i+1) # 四行四列的第一个
        # imshow函数绘图的输入是(0,1)的float,或者(1,256)的int
        # 但prediction是tanh出来的范围是[-1,1]没法绘图,需要转成0~1(即加1除2)。
        plt.imshow( (prediction[i]+1)/2 )
        plt.axis('off')
    plt.show()
test_input = torch.randn(16, 100, device=device)

6. GAN训练

D_loss = []
G_loss = []
epochs = 40
for epoch in range(epochs):
    d_epoch_loss = 0
    g_epoch_loss = 0
    count = len(dataloader) # 一个epoch的大小
    for step, (img, _) in enumerate(dataloader):
        img = img.to(device) # 一个批次的图片
        size = img.size(0)   # 和和图片对应的原始噪音
        random_noise = torch.randn(size, 100, device=device)
        gen_img = gen(random_noise) # 生成的图像

        d_opt.zero_grad()
        real_output = dis(img)  # 判别器输入真实图片,对真实图片的预测结果,希望是1
        # 判别器在真实图像上的损失
        d_real_loss = loss(real_output, torch.ones_like(real_output)) # size一样全一的tensor
        d_real_loss.backward()

        g_opt.zero_grad()
        # 记得切断生成器的梯度
        fake_output = dis(gen_img.detach()) # 判别器输入生成图片,对生成图片的预测结果,希望是0
        # 判别器在生成图像上的损失
        d_fake_loss = loss(fake_output, torch.zeros_like(fake_output)) # size一样全一的tensor
        d_fake_loss.backward()
        
        d_loss = d_real_loss + d_fake_loss
        d_opt.step()
        
        
        # 生成器的损失
        g_opt.zero_grad()
        fake_output = dis(gen_img) # 希望被判定为1
        g_loss = loss(fake_output, torch.ones_like(fake_output))
        g_loss.backward()
        g_opt.step()
        
        # 每个epoch内的loss累加,循环外再除epoch大小,得到平均loss
        with torch.no_grad():
            d_epoch_loss += d_loss
            g_epoch_loss += g_loss
    # 一个epoch训练完成
    with torch.no_grad():
        d_epoch_loss /= count
        g_epoch_loss /= count
        D_loss.append(d_epoch_loss)
        G_loss.append(g_epoch_loss)
        print('Epoch: ',epoch)
        gen_img_plot(gen, test_input)

结果:

 

 可以看到效果还算可以,这是2014年提出的最基础的GAN,后续要有若干改进的工作,效果更好,有机会再学。

  • 7
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
以下是一个简单的基于PyTorch的GAN模型代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from tqdm import tqdm # 定义生成器模型 class Generator(nn.Module): def __init__(self, nz=100, ngf=64, nc=3): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf*8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf*8), nn.ReLU(True), nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*4), nn.ReLU(True), nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf*2), nn.ReLU(True), nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, x): return self.main(x) # 定义判别器模型 class Discriminator(nn.Module): def __init__(self, ndf=64, nc=3): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf*2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*2, ndf*4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*4, ndf*8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf*8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf*8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, x): return self.main(x).view(-1, 1) # 定义训练函数 def train(dataloader, generator, discriminator, optimizer_g, optimizer_d, criterion, device): for epoch in range(num_epochs): for i, data in enumerate(tqdm(dataloader)): real_images = data[0].to(device) batch_size = real_images.size(0) # 训练判别器 optimizer_d.zero_grad() # 训练判别器鉴别真实图像 label_real = torch.full((batch_size,), 1, device=device) output_real = discriminator(real_images) loss_d_real = criterion(output_real, label_real) loss_d_real.backward() # 训练判别器鉴别生成图像 noise = torch.randn(batch_size, nz, 1, 1, device=device) fake_images = generator(noise) label_fake = torch.full((batch_size,), 0, device=device) output_fake = discriminator(fake_images.detach()) loss_d_fake = criterion(output_fake, label_fake) loss_d_fake.backward() # 总判别器损失 loss_d = loss_d_real + loss_d_fake optimizer_d.step() # 训练生成器 optimizer_g.zero_grad() # 训练生成器欺骗判别器 label_real = torch.full((batch_size,), 1, device=device) output_fake = discriminator(fake_images) loss_g = criterion(output_fake, label_real) loss_g.backward() optimizer_g.step() # 每个epoch结束后输出loss和生成的图像 print(f"Epoch {epoch+1}/{num_epochs}, Loss_D: {loss_d.item()}, Loss_G: {loss_g.item()}") fake_images = generator(fixed_noise) save_image(fake_images.detach().cpu(), f"gan_images/epoch_{epoch+1}.png", normalize=True) # 设置超参数 num_epochs = 200 batch_size = 64 lr = 0.0002 beta1 = 0.5 nz = 100 ngf = 64 ndf = 64 nc = 3 # 加载数据集 transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset = datasets.ImageFolder("data/", transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) # 初始化生成器和判别器 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator = Generator(nz=nz, ngf=ngf, nc=nc).to(device) discriminator = Discriminator(ndf=ndf, nc=nc).to(device) # 设置优化器和损失函数 optimizer_g = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999)) criterion = nn.BCELoss() # 固定生成器输入噪声,用于输出生成的图像 fixed_noise = torch.randn(64, nz, 1, 1, device=device) # 训练模型 train(dataloader, generator, discriminator, optimizer_g, optimizer_d, criterion, device) ``` 以上代码演示了如何使用PyTorch实现一个简单的DCGAN。在训练过程中,我们使用交替优化的方式训练生成器和判别器,其中生成器的目标是欺骗判别器,而判别器的目标是尽可能地区分真实图像和生成图像。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值