- 博客(7)
- 问答 (1)
- 收藏
- 关注
原创 MIT-BEVFusion模型---Lidar-Camera外参标定--targetLess based
论文的贡献点为:提出了一种基于稳健初始猜测估计算法的二维-三维对应关系估计。为了利用近期基于图神经网络的图像匹配,作者使用虚拟相机生成 LiDAR 强度图像,并找到 LiDAR 强度图像与相机图像之间的对应关系。然后,通过随机抽样消除 (RANSAC) 和重投影误差最小化,给出 LiDAR-相机变换的估计值。
2025-04-25 10:28:59
731
原创 MIT-BEVFusion模型---Lidar-Camera外参标定--target based
对于激光雷达与相机的标定,现有的方法一般是先标定相机的本征参数,然后再标定激光雷达和相机的外参参数。如果在标定的第一步没有正确标定好相机的本征参数,则很难对激光雷达-相机的外参参数进行准确的标定。由于相机内部结构复杂,且目前缺乏有效的相机本征参数标定的量化评价方法,在实际标定中,外参参数标定的精度往往会因相机本征参数的微小误差而降低。如下图所示。针对现有方法的问题,作者提出了一种基于目标的相机内参与激光雷达-相机外参联合标定方法。设计了一种新的标定板图案,在棋盘格周围添加四个圆孔,用于定位激光雷达位姿。
2025-04-22 17:44:54
1782
原创 MIT-BEVFusion--camera--neck--GeneralizedLSSFPN模型理解
接着分析之前文章MIT-BEVFusion模型的组成部分。MIT-BEVFusion的camera处理流程如下图所示, 其中neck采用的是GeneralizedLSSFPN。输入的通道数为in_channels: [192, 384, 768],输出通道数为out_channels: 256。关于GeneralizedLSSFPN的实现方式,论文中并没有给出细节的解释。数据流流程图的形式进行展示说明。具体实现流程如下,其中LateralConv为1x1的卷积层,PFNConv为3x3的卷积层。
2025-03-27 12:42:09
477
原创 MIT-BEVFusion--camera--encoder--SwinTransformer模型理解
论文主要针对的问题为:将 Transformer 从语言应用到视觉任务中。与作为语言 Transformer 处理基本元素的单词标记不同,视觉元素的规模可以有很大差异,这一问题在诸如物体检测等任务中引起了人们的关注。在现有的基于 Transformer 的模型中,tokens都是固定规模的,这一特性不适合这些视觉应用。另一个区别是,与文本段落中的单词相比,图像中像素的分辨率要高得多。
2025-03-26 21:06:51
1018
原创 关于对港口等封闭场景的L4级自动驾驶感知技术的认知
写在文章的最后,写这篇博客一方面是为了对过去感知工作中认知的一个总结,另一方面也是对自身还未掌握和使用过的传感器、感知模块、具体算法以及未来发展趋势的一个理解和调研,方面后续有针对性的开拓知识领域。此外,也算是对于刚毕业或者刚入这个行业岗位的师弟师妹或者道友的一个学习交流吧。文章中内容为作者本人基于自身的工作经验的一个总结,也还有很多欠缺或者不正确的地方,如果同学觉得有些不太合理的地方也欢迎帮忙指正。最后,文章如果需要转载等,还望通知一声~
2025-03-23 15:08:59
2340
原创 MIT-BEVFusion模型--Decode--SECOND模型理解
BEVFusion的雷达点云处理的decoder部分采用了SECOND模型,所以对SECOND论文进行阅读整理。
2025-03-20 08:17:40
253
原创 MIT-BEVFusion模型理解
论文主要针对的问题为:在近期自动驾驶系统中的多传感器融合方法研究中大部分都是基于点层面的融合,主要通过图像特征来增强雷达点云的信息(具体的,通常采用图像语义标签、CNN特征或者从2D图像中生成的虚拟点来增强雷达点云,然后再采用已有的Lidar-based检测器来预测3D bouding box)。而这种相机到雷达投影的方法会丢弃图像特征的语义密度,特别是对于3D场景分割这类的语义任务。所以作者提出了该面向多任务和多传感器融合的bev融合框架。
2025-03-13 09:55:52
1995
linux+ros+自动新建文件夹+录制指定话题的ros包+自动删除指定天数的ros包文件
2025-04-25
如何对形状、大小均相同的物体进行图像识别?
2019-10-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人