关于对港口等封闭场景的L4级自动驾驶感知技术的认知

        从事商用车的自动驾驶感知算法工作已有一些年头,一直想基于自己的认知总结一下在港口、园区等封闭场景中无人集卡、IGV、无人装载机等商用车的自动驾驶感知技术的相关知识。包括技术框架、每个节点的功能以及每个功能常用的算法有哪些等。先写个整体框架的粗略版本吧,后续有空了逐步编写每个节点模块的细节文章。

1. 引言

        全球贸易的增长和对更高运营效率的需求不断推动港口运营的自动化进程 。自动化码头能够显著提高集装箱码头的装卸效率,增加港口的运输量,同时保证货物装卸质量,这已成为港口未来发展的必然趋势。当前国内的知名自动化程度比较高的码头,如妈湾港、盐田港、天津港等港口中无人集卡和无人IGV在自动化港口的水平运输中发挥着重要作用。未来,港口运营必须更加安全、节能,并提高装卸效率 。从劳动密集型向技术密集型港口运营的转变是采用自动驾驶的关键动因 。高昂的劳动力成本和潜在的短缺使得自动化成为一种在经济上具有吸引力的解决方案。自动驾驶技术通过减少对人类驾驶员的依赖,能够降低成本并提高运营的稳定性。在这种自动化浪潮中,自动驾驶技术对于集装箱卡车(集卡)和智能引导车(IGV)等商业车辆在港口区域和工业园区等封闭环境中的应用至关重要。与公共道路相比,这些封闭环境对感知系统提出了独特的挑战和要求 。本文旨在基于自己的认知水平总结概述一下自动驾驶感知技术在封闭港口类环境中商业车辆中的框架结构、技术现状和发展趋势。

2. 乘用车与商用车的感知技术差异

        面向开放道路环境的乘用车和面向港口等封闭环境的商用车,其自动驾驶的感知技术在多个方面存在显著差异,这主要是由于二者所处的环境复杂性、任务目标、安全要求以及成本考量等因素的不同所致。以下将从多个维度进行对比:

2.1 环境复杂性与可预测性

  • 开放道路乘用车:

    • 环境复杂: 交通参与者种类繁多(行人、自行车、摩托车、轿车、卡车、动物等),行为难以预测。
    • 场景多样: 包含城市道路、高速公路、乡村道路等多种路况,交通规则复杂多变。
    • 动态性强: 光照、天气条件变化剧烈,突发事件(事故、拥堵、施工)频繁。
    • 非结构化程度高: 部分道路标识不清晰,存在临时障碍物等。
  • 封闭环境商用车 (如港口):

    • 环境相对简单: 交通参与者主要是特定的商用车辆(集装箱卡车、龙门吊、AGV等)和工作人员,行为相对可预测。
    • 场景相对单一: 主要在预设的作业区域内行驶,路况相对固定。
    • 动态性可控: 光照通常有一定控制,天气影响相对较小,突发事件类型相对有限。
    • 高度结构化: 道路、作业区域、障碍物等通常有明确的规划和标识。

2.2 感知目标与需求

  • 开放道路乘用车:

    • 目标多样: 需要识别和跟踪各种类型的交通参与者、道路标志标线、交通信号灯、障碍物、可行驶区域等。
    • 精度要求高: 对行人、骑行者等弱势交通群体的识别精度要求极高,以确保安全。
    • 响应速度快: 需要对突发情况做出快速反应,对感知系统的实时性要求很高。
    • 细节感知: 需要感知细微的物体和环境变化,例如路面坑洼、小障碍物等。
  • 封闭环境商用车 (如港口):

    • 目标聚焦: 主要识别和跟踪特定的目标,如集装箱、其他作业车辆、龙门吊、地面标识、障碍物等。
    • 精度要求侧重于作业: 对集装箱的定位、车辆的精确停靠等作业相关的精度要求更高。
    • 响应速度适中: 由于环境相对可控,对响应速度的要求可能不如开放道路乘用车那么苛刻。
    • 宏观感知: 更侧重于对作业流程和环境的整体理解,例如集装箱的堆叠情况、车辆的行驶路径等。

2.3 主要传感器类型

  • 开放道路乘用车:

    • 多传感器融合是主流: 通常采用摄像头、毫米波雷达、激光雷达(LiDAR)等多传感器融合的方案,以实现全方位、高精度的感知。
    • 摄像头: 提供高分辨率的图像信息,用于目标识别、语义分割、交通标志标线识别等。
    • 毫米波雷达: 探测距离远,受天气影响小,主要用于测速和测距,对金属物体敏感。
    • 激光雷达: 提供高精度的三维点云数据,用于构建环境模型、目标检测和定位,但成本较高,受恶劣天气影响较大。
    • 超声波雷达: 主要用于近距离障碍物检测和泊车辅助。
  • 封闭环境商用车 (如港口):

    • 传感器选择更具针对性: 可以根据具体的作业需求和环境特点选择合适的传感器组合。
    • 激光雷达: 由于环境结构化程度高,且对精确的三维信息需求较高(如集装箱定位),激光雷达在港口自动驾驶中应用广泛。
    • 摄像头: 用于识别集装箱编号、地面标识、其他车辆等。
    • 毫米波雷达: 用于检测车辆周围的障碍物。
    • 视觉里程计/惯性测量单元 (VIO/IMU): 用于车辆自身的定位和姿态估计。
    • 其他特定传感器: 例如,用于识别特定类型集装箱的专用传感器。

2.4 数据处理与算法

  • 开放道路乘用车:

    • 算法复杂: 需要处理来自多种传感器的大量异构数据,进行复杂的目标检测、跟踪、识别和行为预测。
    • 深度学习广泛应用: 基于深度学习的算法在图像识别、目标检测等方面取得了显著进展。
    • 多传感器融合算法: 需要有效的融合算法将来自不同传感器的信息进行整合,提高感知的鲁棒性和准确性。
    • 实时性要求高: 感知算法需要具备很高的实时性,以满足车辆快速决策的需求。
  • 封闭环境商用车 (如港口):

    • 算法相对简化: 由于环境和目标相对简单,算法的复杂性可能相对较低。
    • 传统视觉算法与深度学习结合: 可以根据具体任务选择合适的算法,例如,传统的图像处理算法用于识别规则的集装箱,深度学习用于识别复杂的环境元素。
    • 点云处理算法: 针对激光雷达点云数据的处理算法,例如目标聚类、分割、识别等。

2.5 对恶劣环境的鲁棒性要求:

  • 开放道路乘用车:

    • 鲁棒性要求极高: 需要在各种恶劣天气条件下(如雨雪雾、强光、夜晚)保持可靠的感知性能,保障行车安全。
    • 传感器冗余设计: 通过使用多种类型的传感器,并在算法层面进行优化,提高对恶劣环境的适应能力。
  • 封闭环境商用车 (如港口):

    • 鲁棒性要求相对较低: 由于环境相对可控,对恶劣天气的鲁棒性要求可能不如开放道路乘用车那么高。
    • 侧重于特定环境的优化: 例如,针对港口夜晚作业的光照条件进行传感器和算法的优化。

2.6 成本考量:

  • 开放道路乘用车:

    • 成本敏感性高: 为了实现大规模商业化,需要尽可能降低自动驾驶系统的成本,包括感知传感器的成本。
    • 传感器选择需要权衡性能和成本: 例如,纯视觉方案在一定程度上可以降低成本,但鲁棒性可能不如多传感器融合方案。
  • 封闭环境商用车 (如港口):

    • 成本敏感性相对较低: 相对于乘用车,商用车对成本的敏感性可能稍低,更注重系统的可靠性和效率提升带来的长期收益。
    • 可以采用更高成本但性能更优的传感器: 例如,高性能的激光雷达在港口自动驾驶中更容易被接受。

2.7 安全性要求:

  • 开放道路乘用车:

    • 安全性是首要考虑因素: 涉及到公众出行安全,对感知系统的可靠性和安全性要求达到极致。
    • 需要应对各种复杂和突发情况,保障乘员和周围交通参与者的安全。
  • 封闭环境商用车 (如港口):

    • 安全性同样重要: 但主要关注作业人员的安全和设备的安全,避免发生碰撞、碾压等事故。
    • 安全要求可能更侧重于作业流程的规范和控制。

2.8 总结

特征面向开放道路环境的乘用车自动驾驶感知技术面向港口等封闭环境的商用车自动驾驶感知技术
环境复杂性高,动态,不可预测相对低,结构化,可预测
感知目标多样,精度要求高(尤其对弱势群体)聚焦,精度要求侧重于作业
主要传感器摄像头、毫米波雷达、激光雷达等多传感器融合激光雷达、摄像头、毫米波雷达等,选择更具针对性
数据处理与算法复杂,深度学习广泛应用,实时性要求高相对简化,传统算法与深度学习结合,侧重高精度定位
鲁棒性要求极高,需要应对各种恶劣天气相对较低,侧重于特定环境优化
成本考量成本敏感性高,需权衡性能和成本成本敏感性相对较低,更注重长期收益
安全性要求极高,保障公众出行安全重要,但更侧重于作业人员和设备安全
地图与定位需要高精度地图,厘米级实时定位需要高精度地图,定位技术可能更加多样化

        总而言之,面向开放道路环境的乘用车自动驾驶感知技术需要解决更加复杂和动态的环境带来的挑战,对安全性、鲁棒性和成本控制都有着极高的要求。而面向港口等封闭环境的商用车自动驾驶感知技术则可以更加专注于特定的作业需求和环境特点,在传感器选择和算法设计上更具针对性,并可以适当放宽对某些方面的要求,例如对极端恶劣天气的鲁棒性。随着技术的不断发展,这两种应用场景下的感知技术也在相互借鉴和融合,以期实现更安全、更高效的自动驾驶。

3. 封闭场景的感知系统框架结构

        当前港口等封闭场景中商用车的感知仍较多采用传统的模块化感知框架,而不是与乘用车那样采用纯视觉端到端或者基于多传感器融合的从感知到规划控制输出的端到端技术。尽管端到端模型在乘用车自动驾驶领域展现出诱人的潜力,但在港口等封闭园区的商用车自动驾驶中,传统的模块化感知框架依然占据主导地位。这主要是因为封闭园区环境的结构化和可预测性、任务的明确性和流程化、以及对技术成熟度、可靠性和可解释性的高要求。此外,数据获取和标注的便利性、计算资源的限制以及商业化落地的需求等因素也共同促成了这一现状。

        当然,随着技术的不断发展,未来可能会出现一些针对特定封闭园区场景的、融合了端到端思想的感知方法,例如利用Transformer等模型进行更高效的特征提取和融合。但可以预见的是,在相当长的一段时间内,传统的模块化感知框架仍将是封闭园区商用车自动驾驶感知技术的主流选择。这是在特定应用场景下,对技术成熟度、可靠性、可解释性、成本以及商业化落地等多种因素权衡的结果。

  • 2.1 总体架构

        当前港口等封闭场景中商用车的传统的模块化感知框架通常由以下五个主要部分组成:

接下来,我将对每个部分进行大概的介绍:

2.2. 预处理 (Pre-processing)

目的: 预处理是感知流程的第一步,其主要目的是对原始传感器数据进行清洗、校正、增强和转换,以提高后续模块的处理效率和准确性。原始传感器数据通常会受到各种噪声、畸变和环境因素的影响,预处理的目标就是尽量消除这些不利因素,并将其转换为更适合算法处理的形式。

详细介绍: 预处理的具体步骤和方法会根据所使用的传感器类型而有所不同。常见的传感器包括激光雷达 (LiDAR)、毫米波雷达 (Radar) 和摄像头 (Camera)。

  • 激光雷达 (LiDAR) 预处理:

    • 点云去噪 (Point Cloud Denoising): 移除由于传感器自身特性或环境干扰产生的孤立噪声点或离群点,例如使用统计滤波、半径滤波等方法。
    • 运动畸变校正 (Motion Distortion Correction): 当车辆运动时,激光雷达扫描到的点云会发生畸变。需要根据车辆的运动信息(例如IMU数据、轮速计数据)对点云进行校正,使其反映物体在同一时刻的真实形状和位置。
    • 坐标系转换 (Coordinate Transformation): 将不同激光雷达或不同时刻扫描到的点云转换到统一的坐标系下,方便后续的融合和处理。
    • 地面滤波 (Ground Filtering): 在自动驾驶场景中,地面点通常不是直接感兴趣的障碍物。地面滤波的目的是将地面点从点云中分离出来,减少后续处理的数据量,并提高对非地面障碍物的检测性能。常用的方法包括基于高度差、斜率等特征的滤波算法。
    • 点云聚类 (Point Cloud Clustering - 可选): 有时在预处理阶段也会进行初步的点云聚类,将属于同一个物体的点云聚集在一起,形成初步的物体候选区域。
  • 毫米波雷达 (Radar) 预处理(这一传感器暂时没使用,了解较少,友商在用):

    • 数据滤波 (Data Filtering): 移除由于噪声或干扰产生的虚假目标点。
    • 多普勒速度校准 (Doppler Velocity Calibration): 对雷达测量的目标速度进行校准,提高速度信息的准确性。
    • 数据关联 (Data Association - 初步): 在连续的扫描中,初步将属于同一个目标的回波点关联起来。
  • 摄像头 (Camera) 预处理:

    • 图像去噪 (Image Denoising): 移除图像中的随机噪声,例如使用高斯滤波、中值滤波等方法。
    • 图像增强 (Image Enhancement): 调整图像的亮度、对比度、饱和度等参数,改善图像的视觉效果,突出感兴趣的特征。
    • 图像校正 (Image Correction): 校正由于镜头畸变造成的图像变形,例如使用相机标定参数进行去畸变处理。

2.3 障碍物检测 (Obstacle Detection)

目的: 障碍物检测是感知流程的核心环节之一,其目标是识别出环境中存在的潜在障碍物,例如车辆、行人、交通锥、路沿等。这是自动驾驶车辆进行路径规划和决策的基础。

详细介绍: 障碍物检测的方法也根据传感器类型而异,并且可以相互结合使用。

  • 基于激光雷达 (LiDAR) 的障碍物检测:

    • 基于聚类的方法 (Clustering-based Methods): 将预处理后的点云进行聚类,将空间上相邻的点云划分到同一个物体中。然后根据聚类的大小、形状、高度等特征判断是否为障碍物。常用的聚类算法包括K-Means、DBSCAN(这个用得多~)、欧几里得聚类等。
    • 基于特征的方法 (Feature-based Methods): 提取点云的几何特征(例如形状、尺寸、表面法向量等),然后使用机器学习或深度学习方法对障碍物进行分类和识别。
    • 基于深度学习的方法 (Deep Learning-based Methods): 利用深度神经网络直接从原始点云或体素化的点云中学习障碍物的特征,实现端到端的障碍物检测,例如VoxelNet、PointPillars、SECOND等。
  • 基于毫米波雷达 (Radar) 的障碍物检测:

    • 基于阈值的方法 (Threshold-based Methods): 根据雷达回波的强度、距离、速度等信息,设定阈值来判断是否存在障碍物。
    • 基于聚类的方法 (Clustering-based Methods): 将雷达回波点进行聚类,形成潜在的障碍物目标。
    • 基于模型的方法 (Model-based Methods): 将雷达数据与已知的物体模型进行匹配,判断是否存在特定类型的障碍物。
  • 基于摄像头 (Camera) 的障碍物检测:

    • 基于传统图像处理的方法 (Traditional Image Processing-based Methods): 利用颜色、纹理、边缘等图像特征,结合机器学习算法(例如SVM、HOG+SVM)进行障碍物检测。
    • 基于深度学习的方法 (Deep Learning-based Methods): 利用卷积神经网络 (CNN) 直接从图像中学习障碍物的特征,实现高精度的目标检测,例如Faster R-CNN、YOLO、SSD等。这些方法可以同时检测出障碍物的类别和位置。
    • 港口自动驾驶场景中,通常相机不单单用于障碍物的检测,还会应用在车道线检测、流动锁站识别、融合视觉的SLAM等方面。车道线检测中,常用的模型有UFLD、CLRnet等。

2.4 目标跟踪 (Target Tracking)

目的: 目标跟踪的目的是在连续的感知数据流中,为每个检测到的障碍物分配唯一的身份标识,并估计其在时间和空间上的运动状态(例如位置、速度、方向)。目标跟踪对于预测障碍物的未来行为、进行路径规划和决策至关重要。

详细介绍: 目标跟踪通常涉及以下几个关键步骤:

  • 状态估计 (State Estimation): 使用卡尔曼滤波 (Kalman Filter)、扩展卡尔曼滤波 (Extended Kalman Filter)、无迹卡尔曼滤波 (Unscented Kalman Filter) 等方法,根据当前时刻的观测值(例如障碍物的位置、速度)和上一时刻的状态估计,预测当前时刻的目标状态。
  • 数据关联 (Data Association): 将当前时刻检测到的目标与上一时刻跟踪到的目标进行匹配,确定哪些检测结果对应于同一个目标。常用的数据关联方法包括最近邻匹配、匈牙利算法、联合概率数据关联 (JPDA)、多假设跟踪 (MHT) 等。
  • 状态更新 (State Update): 根据数据关联的结果,利用当前时刻的观测值对预测的目标状态进行更新,得到更精确的目标状态估计。
  • 目标管理 (Object Management): 对新出现的目标进行初始化,对长时间未被观测到的目标进行删除,维护当前场景中正在跟踪的目标列表。

目标跟踪可以基于不同的传感器数据进行,也可以进行多传感器融合跟踪。 例如,可以单独使用激光雷达点云进行跟踪(例如基于质心或形状特征的跟踪),也可以单独使用雷达回波进行跟踪(例如基于距离和速度信息的跟踪),还可以单独使用图像进行跟踪(例如基于目标框或视觉特征的跟踪)。

2.5 后融合 (Post-Fusion)

目的: 后融合是指在每个传感器独立完成其感知任务(例如障碍物检测和跟踪)之后,将来自不同传感器的感知结果进行整合,以获得更全面、更准确、更鲁棒的环境理解。不同的传感器具有不同的优点和缺点,例如激光雷达精度高但受天气影响较大,雷达测速准但角度分辨率低,摄像头能提供丰富的颜色和纹理信息但受光照影响较大。通过后融合,可以取长补短,提高整体感知性能。

详细介绍: 后融合通常在目标级别进行,即将来自不同传感器的检测到的目标或跟踪到的目标进行关联和融合。常见的后融合方法包括:

  • 基于规则的融合 (Rule-based Fusion): 根据预设的规则,例如信任度、优先级等,选择或组合来自不同传感器的感知结果。
  • 基于概率的融合 (Probability-based Fusion): 使用概率统计方法,例如贝叶斯滤波、卡尔曼滤波的变种(例如中心化差分卡尔曼滤波),对来自不同传感器的目标状态估计进行加权平均或更复杂的融合。
  • 基于深度学习的融合 (Deep Learning-based Fusion): 利用神经网络学习不同传感器数据之间的关联性,并直接输出融合后的感知结果。

后融合的关键在于解决不同传感器之间的数据关联问题,即判断来自不同传感器的感知结果是否指向同一个物理目标。 这通常需要考虑目标的位置、速度、形状、类别等信息,以及输入到后融合节点的来自不同传感器类型的检测结果的时间同步问题。

2.6 感知结果输出 (Perception Result Output)

目的: 感知结果输出是感知系统的最终环节,其目标是将融合后的环境信息以合适的形式传递给下游的规划 (Planning) 和控制 (Control) 模块,供其进行路径规划、行为决策和车辆控制。

详细介绍: 感知结果通常包括以下信息:

  • 障碍物列表 (List of Obstacles): 包括每个检测到的障碍物的唯一标识符、类别(例如车辆、行人、集装箱、交通锥等)、位置(例如在车辆坐标系或世界坐标系下的三维坐标)、尺寸、速度、方向等信息。
  • 自由空间信息 (Free Space Information)(可选,待实现): 指示车辆周围可以安全行驶的区域,通常以栅格地图 (Grid Map) 或其他几何表示形式表示。
  • 可行驶区域 (Drivable Area)(可选,待实现): 标识出车辆可以行驶的道路或区域范围。
  • 交通标志和信号灯信息 (Traffic Sign and Light Information - 可选): 如果感知系统还具备识别交通标志和信号灯的功能,也会将这些信息作为感知结果输出。

感知结果的输出格式和内容需要根据下游模块的需求进行定制。 例如,规划模块可能需要障碍物的位置和速度信息来预测其未来轨迹,而控制模块可能需要自由空间信息来规划车辆的局部运动。

4. 对港口等封闭场景的自动驾驶感知技术的未来趋势的调研结果

        虽然目前模块化框架仍是主流,但随着技术的进步,未来我们可能会看到更多创新性的感知架构出现,以适应封闭园区日益复杂和多样化的作业需求。港口等封闭园区商用车自动驾驶感知技术的未来发展将呈现出多传感器融合、人工智能深度赋能、精细化目标跟踪、上下文感知融合、边缘计算加速、标准化开放以及成本持续降低等趋势。这些趋势将共同推动感知系统向着更高精度、更强鲁棒性、更低延迟和更智能化的方向发展,最终实现更安全、更高效的自动驾驶作业。

4.1 更高精度、更鲁棒的多传感器融合感知:

  • 趋势: 未来将更加强调多传感器融合,利用各种传感器的优势互补,克服单一传感器的局限性。融合的层面将从后融合向更深层次的前融合和特征级融合发展。
  • 详细分析:
    • 更丰富的传感器组合: 除了传统的激光雷达、毫米波雷达和摄像头,可能会引入红外热成像、超声波雷达等传感器,以应对特定的环境条件(如恶劣天气、低光照)和检测需求(如细小障碍物、地面状况)。
    • 更智能的融合算法: 将利用更先进的算法(如基于深度学习的融合网络、注意力机制等)来动态地调整不同传感器的权重,根据环境和任务需求选择最可靠的信息来源。
    • 时空同步与校准的提升: 更精确的传感器时钟同步和空间校准将是实现高精度融合的关键,能够减少数据偏差,提升融合效果。
    • 环境理解的增强: 多传感器融合不仅能提高障碍物检测的准确性,还能提供更丰富的环境信息,例如物体的材质、温度等,有助于更精细的场景理解。

4.2 基于人工智能和深度学习的感知能力全面提升:

  • 趋势: 人工智能和深度学习将渗透到感知框架的各个环节,取代或增强传统的算法。
  • 详细分析:
    • 更强大的障碍物检测与识别: 基于Transformer、图神经网络等先进深度学习模型将在点云、图像等多模态数据上实现更高精度的障碍物检测、分类和属性识别(如车辆类型、集装箱尺寸、人员姿态)。
    • 环境语义理解的深化: 感知系统将不仅仅停留在识别物体,而是能够理解场景的语义信息,例如识别出装卸区域、行驶车道、禁行区域等,并理解物体之间的关系和交互。
    • 行为预测能力的初步探索: 基于历史轨迹和场景上下文,感知系统将开始具备初步的障碍物行为预测能力,例如预测行人的行走方向、车辆的转向意图,为规划控制提供更前瞻的信息。
    • 自监督和半监督学习的应用: 为了降低数据标注成本,自监督和半监督学习方法将在感知模型的训练中发挥更重要的作用,利用大量的无标签或少量标签数据来提升模型性能。

4.3 更精细化的目标跟踪与状态估计:

  • 趋势: 目标跟踪将更加关注目标的精细化状态估计和长期一致性跟踪。
  • 详细分析:
    • 更精确的运动状态估计: 利用更先进的滤波算法(如基于流形优化的滤波)和运动模型,实现对目标位置、速度、加速度、姿态等运动状态的更精确估计。
    • 鲁棒的身份保持: 在目标被遮挡、短暂消失或与其他目标交互时,能够保持目标的身份标识不丢失或混淆。
    • 多目标跟踪性能的提升: 在复杂场景中,能够同时稳定地跟踪大量目标,并准确地处理目标之间的遮挡和交互。
    • 基于预测的跟踪: 结合行为预测,可以实现更智能的跟踪,例如在目标被遮挡时,根据其可能的运动轨迹进行预测性跟踪。

4.4 上下文感知与场景理解的融合:

  • 趋势: 感知系统将更加注重结合高精度地图、作业流程、环境规则等上下文信息,实现更高级别的场景理解。
  • 详细分析:
    • 地图先验信息的利用: 将高精度地图中的道路结构、交通标识、作业区域等信息融入感知流程,辅助障碍物检测、定位和路径规划。
    • 作业流程的理解: 感知系统能够理解当前的作业流程(例如集装箱装卸、货物搬运),从而更准确地识别和跟踪与任务相关的目标。
    • 环境规则的感知: 感知系统能够识别和理解环境中的规则,例如限速标志、禁停区域等,为车辆的决策提供约束。
    • 异常事件的检测: 基于上下文理解,感知系统能够检测出与预期行为不符的异常事件,例如人员误入作业区域、设备故障等,并及时发出警报。

4.5 边缘计算与低延迟感知:

  • 趋势: 为了满足自动驾驶对实时性的要求,感知计算将更多地向边缘侧转移。
  • 详细分析:
    • 高性能嵌入式计算平台的普及: 更强大的车载计算平台将能够支持更复杂的感知算法和模型。
    • 算法的轻量化和优化: 为了在有限的计算资源下实现实时性,感知算法将更加注重轻量化和高效性。例如,模型剪枝、量化、知识蒸馏等技术将被广泛应用。
    • 传感器数据流的优化: 高效的数据传输和处理架构将能够减少感知延迟,提高系统的响应速度。

4.6 标准化与开放性:

  • 趋势: 随着行业的发展,感知数据的格式、接口和评估标准将逐步走向标准化和开放。
  • 详细分析:
    • 统一的数据格式: 标准化的数据格式将方便不同传感器和算法之间的信息交换和共享。
    • 开放的接口: 开放的感知接口将使得不同的自动驾驶系统能够更容易地集成和使用各种感知模块。
    • 客观的评估标准: 建立统一的感知性能评估标准将有助于衡量不同感知系统的优劣,推动技术进步。

4.7 成本降低与商业化加速:

  • 趋势: 感知技术的成本将持续降低,推动其在港口等封闭园区的更大规模商业化应用。
  • 详细分析:
    • 传感器成本的下降: 随着技术的成熟和规模化生产,激光雷达、毫米波雷达等关键传感器的成本有望进一步降低。
    • 算法效率的提升: 更高效的算法和更低的计算资源需求将有助于降低硬件成本。
    • 软件栈的成熟: 成熟的感知软件栈将降低开发和维护成本。

4.8 混合式感知方案的探索:

  • 趋势: 未来可能会出现更多结合了传统模块化方法和端到端学习思想的混合式感知方案。
  • 详细分析:
    • 端到端学习辅助的模块化感知: 例如,利用端到端模型学习到的特征来改进传统模块中的目标检测或跟踪模块。
    • 模块化框架指导的端到端学习: 例如,将感知任务分解为若干个子任务,分别使用端到端模型进行学习,并结合传统方法进行集成和优化。

5. 总结        

        写在文章的最后,写这篇博客一方面是为了对过去感知工作中认知的一个总结,另一方面也是对自身还未掌握和使用过的传感器、感知模块、具体算法以及未来发展趋势的一个理解和调研,方便后续有针对性的开拓知识领域。此外,也算是对于刚毕业或者刚入这个行业岗位的师弟师妹或者道友的一个学习交流吧。文章中内容为作者本人基于自身的工作经验的一个总结,也还有很多欠缺或者不正确的地方,如果同学觉得有些不太合理的地方也欢迎帮忙指正。感谢~

        最后,文章如果需要转载等,还望通知一声~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值