前面两篇《2024年RAG关键技术大盘点(1月—4月)》和《2024年RAG关键技术大盘点(5月—8月)-CSDN博客》盘点2024年1月到8月内RAG领域的关键技术突破,本文会继续以时间为顺序盘点2024年9月到11月内RAG领域的关键技术突破。
9月
AgentRE:一种基于代理的框架,用于在关系抽取中的复杂信息环境中导航
论文:https://arxiv.org/abs/2409.01854
项目:https://github.com/Lightblues/AgentRE
简介:该论文提出了AgentRE,一种基于智能代理的框架,旨在提升关系抽取(Relation Extraction, RE)任务的效果。AgentRE将关系抽取任务视为一个多智能体协作过程,每个代理负责不同的信息处理或推理步骤。该框架通过多步交互和动态策略来应对复杂的信息环境,特别是在存在多种噪声、冗余信息或信息不完整的场景下。实验结果表明,AgentRE在多个关系抽取基准数据集上取得了显著的性能提升,尤其在处理复杂、长文本时表现更佳。
iText2KG:使用大型语言模型的增量式知识图谱构建
论文:https://arxiv.org/abs/2409.03284
项目:https://github.com/AuvaLab/itext2kg
简介:该论文提出了iText2KG,一种利用大型语言模型(LLMs)实现增量式知识图谱(Knowledge Graph, KG)构建的方法。iText2KG旨在动态地将不断更新的文本数据转化为知识图谱,特别适用于信息密集且变化频繁的场景。该方法结合了LLMs在自然语言理解方面的强大能力,能够从非结构化文本中提取实体、关系及其属性,并在已有知识图谱的基础上进行增量更新。实验表明,iText2KG在信息提取的准确性和图谱更新的效率方面表现优异,为知识图谱在动态环境中的构建和维护提供了有效方案。
GraphInsight:解锁大型语言模型对图结构理解的洞察
论文:https://arxiv.org/abs/2409.03258
简介:该论文提出了GraphInsight,一个探索大型语言模型(LLMs)在图结构理解能力方面的框架。研究者分析了LLMs如何处理图数据,并评估其在图相关任务(如节点分类、链接预测和子图匹配)上的表现。GraphInsight 通过一系列实验揭示了LLMs 在隐式图表示学习上的潜力,同时也指出了其在捕捉复杂拓扑结构时的局限性。研究表明,尽管LLMs 能够在某些任务上提供有价值的推理能力,但在精确建模图结构方面仍与专门的图神经网络(GNNs)存在差距。论文最终探讨了如何结合 LLMs 和图学习方法,以提升复杂图数据的理解和推理能力。
LA-RAG:利用检索增强生成提升基于LLM的自动语音识别(ASR)准确率
论文:https://arxiv.org/abs/2409.08597
简介:该论文提出了LA-RAG(L