自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(84)
  • 收藏
  • 关注

原创 【Python 进阶系列】第2篇:继承、封装和多态,原来可以这样写“宠物类”和“猫类”

本文通过宠物类案例讲解Python面向对象三大特性:继承让Cat类复用Pet类的属性和方法,并可重写speak()方法;封装通过私有属性和getter/setter保护内部状态;多态则允许不同子类(如Cat和Dog)以统一接口调用speak()方法。三大特性分别实现代码复用、数据安全和灵活调用。建议实践时添加更多子类,封装更多状态,尝试抽象基类。全文以简明示例揭示了面向对象编程的核心精髓。

2025-06-10 13:45:08 285

原创 【Python 进阶系列】第1篇:搞懂类和对象,从写一个小猫开始

本文介绍了Python中的类和对象概念。通过猫的类比,作者解释了类作为"蓝图"和对象作为"实例"的关系:类定义属性和方法,对象则是具体实现。文章详细演示了如何创建Cat类,包含__init__构造方法、meow()和eat()等方法,并展示了如何实例化对象。文中强调类的三大优点:封装性、复用性和易维护性,并提供了扩展类功能的练习建议。最后预告将讲解继承、封装和多态等进阶内容,帮助读者循序渐进掌握面向对象编程。

2025-06-10 13:42:41 654

原创 【Python零基础入门系列】第10篇:Python 入门级实践——几个小作业练习详解

作业复习核心实战能力猜数字循环、条件、输入输出控制逻辑基本功BMI类型转换、公式计算简单算法能力九九乘法表循环嵌套、输出对齐构造结构化输出文本分析器字符串处理、字典统计初步数据分析能力这些题目并不难,但只要能写熟、改顺、举一反三,你的 Python 已经从“看得懂”进入“写得出”阶段了。

2025-06-05 10:33:09 444

原创 【Python零基础入门系列】第9篇:Python 代码调试技巧(print调试、使用 IDE Debug)

调试(Debug)就是在程序出现问题时,通过一些方法找出程序出错的原因和位置,并进行修复的过程。语法错误(拼写、格式不对)逻辑错误(程序运行没报错,但结果不对)运行错误(比如除以 0、文件没找到等)调试就是把隐藏的 bug,揪出来、看清楚、修掉它。方法优点缺点print 调试简单、直接、适合新手复杂程序太乱,不易管理IDE Debug图形化、可视化、支持断点与查看变量需要熟悉 IDE 操作,稍微有门槛logging 方式灵活、适合开发阶段需要基础配置,不适合零基础快速调试。

2025-06-05 10:29:51 717

原创 【Python零基础入门系列】第8篇:Python 中的注释和编码规范(PEP 8)

本篇介绍了 Python 中注释的写法及 PEP 8 编码规范,涵盖缩进、命名、空格、导入顺序等核心要点,并推荐使用 flake8 和 black 工具自动检查与格式化代码,帮助初学者写出更清晰、易读、符合规范的 Python 程序。

2025-06-04 12:53:46 510

原创 【Python零基础入门系列】第7篇:Python中的错误与异常处理

本文介绍了Python中的错误与异常处理机制,帮助提升程序健壮性。主要内容包括:常见异常类型(如ZeroDivisionError、ValueError等)、try-except捕获异常的方法、else和finally的用法、自定义异常的实现方式。文章还指出了新手常犯的错误处理误区,并以一个带异常处理的简单计算器项目为例进行综合演示。掌握异常处理可以让程序在出错时优雅应对而非直接崩溃,是Python编程的重要技能。

2025-06-04 12:51:34 915

原创 【Python零基础入门系列】第6篇:Python 的数据结构世界(列表、字典、集合、元组)

本文介绍了Python中四种核心数据结构的特点和用法:1. 列表(list) - 有序可变序列,支持增删改查和切片操作;2. 元组(tuple) - 不可变序列,适合存储固定数据;3. 字典(dict) - 键值对映射,用于表示对象属性;4. 集合(set) - 无序唯一元素集合,支持集合运算。文章通过具体示例展示了每种数据结构的创建、访问和操作方法,指出了常见误区,并建议实践练习来巩固理解。掌握这些数据结构是Python编程的基础,能帮助开发者更有效地组织和处理数据。

2025-05-29 13:26:19 1007

原创 【Python零基础入门系列】第5篇:Python 中的函数、模块和文件读写

在写程序的时候,如果某段代码要反复用,就可以用函数把它“打包”起来。函数 = 自动化的果汁机,只要你放进去不同的水果(参数),就能榨出对应的果汁(返回值)。def 函数名(参数1, 参数2, ...):# 函数体return 返回值Python 自带了很多模块,比如mathrandomos等,后面我会专门介绍Python 常用的自带模块。你也可以自己写。假如你有一个文件叫tools.py# tools.py")# main.py。

2025-05-29 13:23:13 743

原创 【Python零基础入门系列】第4篇:什么是控制流?if / while / for 一文看懂

你可以把程序想象成一个机器人,它本来只会从上到下顺序执行每一行代码,但加上控制流之后,它就像有了思考能力,可以做决策、可以循环重复一段操作。本篇,我们来讲 Python 最基础但最重要的语法之一:控制流结构。

2025-05-21 13:20:06 336

原创 【Python零基础入门系列】第3篇:什么是 Python 的变量、数据类型和输入输出?

​前两篇我们已经学会了如何安装 Python 使用编程工具 IDE,并写出了人生第一个程序 print("Hello, world!"),是不是有点成就感了?今天我们就继续深入一点点,来聊聊编程的“灵魂三问”:什么是变量?什么是数据类型?如何接收用户的输入?

2025-05-21 13:17:44 863

原创 【Python零基础入门系列】第2篇:你的第一个 Python 程序,5分钟上手编程

系列的上一篇文章介绍了Python是什么?怎么安装环境?推荐哪些IDE?如果你都已经安装好了,那么恭喜你决定踏入编程的世界!这篇文章,我们将带着你一起用 Python 编写第一个小程序。不要害怕,5分钟就够了,保证轻松上手!只需要准备好你上一篇文章提到的工具:基础 Python 环境和 IDE,就可以开始了。

2025-04-29 09:58:12 879

原创 【Python零基础入门系列】第1篇:Python 是什么?怎么装环境?推荐哪些 IDE?

​前两天看到新闻英伟达为 CUDA 添加原生 Python 支持,意味着开发者可直接用 Python 操作 GPU,加速 AI 和高性能计算,降低门槛,让 Python 的应用范围更广、能力更强。一直想写一系列文章教知友们从零开始学会 Python 编程,目标是写得通俗、有趣、有用。不管你是Python小白、应届生、还是好奇想试试编程,我希望这个专栏都能帮你走得更轻松一些。今天我们从最最基础的开始——Python 是什么?它能做什么?怎么在自己的电脑上装好环境?应该用什么工具来写代码?

2025-04-29 09:54:45 2252

原创 【职场实录】从大厂跳到小公司,我经历了一场代价沉重的试错

本文记录了作者从大厂跳槽到小公司后经历的一次代价惨痛的试错过程。表面上诱人的机会,最终因资源匮乏、管理混乱、期权落空而落得身心俱疲。作者结合亲身经历,提醒程序员们在考虑跳槽时必须冷静评估风险,尤其不要轻信熟人推荐。一次冲动的决定,很可能给职业发展带来长期隐患。

2025-04-28 19:47:10 541

原创 喜马拉雅卖身腾讯音乐:在线音频独立时代的终结

喜马拉雅被腾讯音乐收购,标志着独立音频平台时代的落幕。作为曾经的“知识付费第一平台”,喜马拉雅因增长放缓、盈利困难、短视频冲击等多重因素,走向衰落。腾讯音乐收购意在内容互补与用户留存,音频行业未来将加速整合,走向内容精品化、模式细分化,音频不再孤立,而成为平台内容生态的重要拼图。

2025-04-28 17:33:24 1189

原创 互联网大厂为何热衷内推码?真的会助长小团体文化吗?

内推码并非“特权通道”,而是大厂提升招聘效率、降低成本的常规操作。在严密的面试和背调机制下,靠关系“上车”难度极高。真正需要担心的不是基层员工拉帮结派,而是高层“山头文化”的资源垄断。关键在于制度透明、流程公开,才能杜绝黑箱操作,保障公平晋升。

2025-04-25 08:58:34 1025

原创 取消大小周≠告别内卷,小红书取消大小周后可能还有更深的压榨

小红书宣布取消大小周,但这并不意味着加班文化的终结,反而可能是“换汤不换药”的隐性加班升级。从华为到字节的真实经历看,所谓“人性化”改革,往往伴随着更强的日常工作压力和隐形剥削。在就业压力和经济下行的双重背景下,制度形式变化掩盖不了加班的本质,只要内卷机制未破,打工人依旧在用命换钱。

2025-04-25 08:53:54 379

原创 京东外卖“超时免单”,打响外卖行业久违的服务之战

京东外卖推出“超时20分钟免单”策略,引发用户热议。作者支持这一举措,认为它唤起了早年互联网“红利大战”的记忆,也为沉寂已久的外卖行业注入活力。尽管短期内仍有履约短板,但这一政策带来了用户对服务质量的期待。本文分析了平台竞争背后的商业逻辑与骑手生存现状,并呼吁良性竞争成为推动行业进步的新动力。

2025-04-24 16:50:07 740

原创 科技巨头集体“扩招”,真是就业回暖,还是寒冬幻觉?

百度、腾讯、华为近期宣布大规模扩招实习生的现象。这些扩招更多是出于企业公关和政策配合的需求,而非行业真正回暖。实际岗位多为低成本实习,难以解决结构性就业问题,反而对中年职场人形成冲击。作者呼吁公众警惕虚假繁荣,关注数字背后真正的就业质量和可持续性。

2025-04-24 16:47:11 1005

原创 【职场杂谈】如何看待职场打工人被领导催着写日报周报这种现象?

频繁的日报、周报和站会常被用作掌控员工进度、填充领导汇报内容、甚至测试服从性。然而,这类形式主义的管理方式往往效率低下,真正努力工作的人反而更疲惫。虽然汇报本身有助于团队协作,但若仅为监控而设,就失去了意义。应对这类任务,职场人可通过模板化、低成本应付,专注于更有价值的工作。

2025-04-10 20:23:21 457

原创 【职场杂谈】为什么公司一边招人,一边裁人?

为什么公司一边招人,一边裁人?做为一个程序员,在互联网和科技公司里,经常看见这种情况。就是很多公司一边裁员一边招人,虽然这看似很矛盾,但其实,这背后有一些商业逻辑和管理逻辑吧。

2025-04-10 20:18:23 773

原创 【职场杂谈】大厂年薪几千万乃至上亿的中高层还有中年危机吗?

中年危机是方方面面的,本质是曾经以为自己可以掌控一切,但到了中年,发现事业、家庭、健康都可能出现不可预测的问题。大厂年薪几千万乃至上亿的中高层虽然不会有普通人的中年经济危机,但是在事业、家庭和健康方面也都会面临中年危机。

2025-04-01 13:01:43 896

原创 【职场杂谈】做程序员怎么快速升职?

做程序员这么多年,接触到的已经快速升职的程序员里,特点各有不同,有的是技术能力强,有的是非常能卷的,有的是大腿抱得好,有的是向上管理做得到位。但是他们都有一个共同特点,那就是“运气好”。所以,要想在程序员这条路上快速升职,说白了,运气是第一生产力。这个行业里,技术牛的、能干活的太多了,但真能一路升得飞快的,往往是赶上了天时地利人和。

2025-04-01 12:58:29 507

原创 微软 GraphRAG 项目学习总结

微软2024年4月份发布了一篇《From Local to Global: A GraphRAG Approach to Query-Focused Summarization》(GraphRAG:从局部到全局的查询式摘要方法)论文,提出了一种名为GraphRAG的检索增强生成(RAG)方法,用于查询式摘要任务。传统的RAG方法主要基于局部检索和生成,可能会忽略不同检索片段之间的全局关系,导致生成的摘要缺乏整体连贯性和深度。

2025-03-27 13:20:58 1405

原创 RAG 综述万字简化版

整个RAG综述,从以知识为中心的视角,对迄今为止在检索增强生成(RAG)领域最重要的研究进行了系统而广泛的综述。提出了一个总体框架,将现有研究组织为核心模块——从知识获取和嵌入到检索和最终答案生成——以减少这个快速发展的领域中的模糊性。深入分析了相关挑战,特别是在知识解析、整合和上下文适应方面,并提出了一种分类方案,包括多模态和记忆增强 RAG 等新兴方法。还识别了关键的未解问题和有前景的研究方向,强调了 RAG 在转变多个领域中的知识密集型应用方面的潜力。希望这篇综述能为读者提供对 RAG 关键组件、主要

2025-03-27 13:16:41 984

原创 【RAG综述系列】之 RAG 应用和未来方向

整个RAG综述,从以知识为中心的视角,对迄今为止在检索增强生成(RAG)领域最重要的研究进行了系统而广泛的综述。提出了一个总体框架,将现有研究组织为核心模块——从知识获取和嵌入到检索和最终答案生成——以减少这个快速发展的领域中的模糊性。深入分析了相关挑战,特别是在知识解析、整合和上下文适应方面,并提出了一种分类方案,包括多模态和记忆增强 RAG 等新兴方法。还识别了关键的未解问题和有前景的研究方向,强调了 RAG 在转变多个领域中的知识密集型应用方面的潜力。希望这篇综述能为读者提供对 RAG 关键组件、主要

2025-03-26 13:13:57 1087

原创 【RAG综述系列】之 RAG 先进方法与综合评估

高级 RAG 方法超越基础 RAG 模型,提升系统在训练优化、多模态处理、记忆增强和智能推理方面的能力。关键进展包括RAG 训练(优化检索与生成协同)、多模态 RAG(整合多种感知模态)、记忆 RAG(引入长期记忆提升推理与个性化)、智能 RAG(采用动态优化适应信息变化)。这些方法拓展了 RAG 的应用边界,使其能应对复杂任务。RAG 评估需同时关注有效性(检索相关性、答案连贯性、准确性)和效率(计算资源消耗、响应延迟、可扩展性)。

2025-03-26 13:06:41 590

原创 【RAG综述系列】之 RAG 特点与挑战以及方法与评估

目前文章总结了 RAG 的核心特点和目前面临的调整,还详细介绍了 RAG 核心组件,说明 RAG 系统如何理解用户查询、处理不同类型的知识、将信息转换为向量、构建搜索索引、检索相关内容、将知识与模型整合,并在生成答案时提供适当的引用。后续会继续介绍 RAG 的高级方法以及评估方法。

2025-03-24 16:19:57 807

原创 【RAG综述系列】之 RAG 相关背景和基本原理

文章中回顾了 RAG 的基础概念,并分析当前模型所面临的关键挑战,为理解外部知识与语言生成的融合奠定基础。同时,深入探讨 RAG 的核心原理,详细介绍知识检索、整合和生成的流程。后续会进一步探讨前文提到的知识选择、检索效率及上下文推理等挑战,并分析其复杂性。还有介绍 RAG 的各种方法,包括传统的基于检索的模型,以及更高级的多模态方法,这些方法引入了更强的推理能力和记忆机制。并分析评估 RAG 系统的标准和数据集,并批判性地回顾现有的评测方法与指标。

2025-03-24 16:12:24 1013

原创 基于图的检索增强生成(GraphRAG)概述

GraphRAG 通过结合图数据和 RAG 方法,为复杂的信息检索和生成任务提供了新的解决方案。未来的研究应关注如何提高其可扩展性、提高检索效率,并探索更丰富的应用场景。

2025-03-17 13:00:00 988

原创 【职场杂谈】2025 年,科技互联网行业的「蓝海岗位」还有哪些?

随着这几年科技发展迅猛,尤其是人工智能技术,并且真的开始影响到各行各业了,比如智能制造、新能源、数字内容和医疗健康科技等领域。也增加了一些新的岗位,应届生可以根据自己的兴趣和背景选择合适的方向,并通过提升技能、参与项目、积累经验、优化求职材料等方式提升竞争力。

2025-03-13 13:29:40 1314

原创 【职场杂谈】从华为OD招聘黑幕说说外包用工制度与行业深思

华为OD招聘黑幕的曝光揭示了企业外包用工模式的漏洞,一些内部员工利用招聘权力牟利,形成灰色产业链,甚至长期剥削外包员工。华为OD模式兴起于2019年,虽在降本增效方面具备优势,但因合同关系模糊,劳动权益受限,引发争议。全球范围内,劳务外包已成为企业优化成本的重要手段,美国、欧洲和日本等地均有广泛实践,但也带来了核心竞争力下降、工作不稳定、待遇不公等问题。各国通过不同的方式加强监管,以平衡企业灵活用工与劳动者权益保护。

2025-03-13 13:26:57 1297

原创 传统 RAG 的缺点及 RAG 优化方向

传统RAG中在数据、检索、提示词、模型及评估方面都需要进行全面优化,现在RAG 的应用已逐步从传统的“检索-生成”模式向更广泛的全链路优化演进。通过在训练、微调、检索、推理、语料和知识整合等环节引入创新方法,RAG 系统不断突破传统方法的局限,展现出更强的适应性、准确性和可解释性。

2025-03-11 13:05:51 925

原创 2024年RAG关键技术大盘点(9月—11月)

以时间为顺序盘点2024年9月到11月内RAG领域的关键技术突破。总的来说,RAG的发展趋势正朝着更加智能化、结构化和领域化的方向前进。未来的RAG系统将更加注重上下文过滤、知识结构化和领域知识的有效利用,进一步提升复杂任务中的推理能力和生成质量。

2025-03-11 09:15:10 1070

原创 2024年RAG关键技术大盘点(5月—8月)

2024年5月至8月,检索增强生成(RAG)在自然语言处理(NLP)领域的应用和研究进入了一个新的阶段,多个创新性方法和框架不断涌现,推动了RAG技术的多样化和精细化发展。本文详细盘点了论文的主要内容和方法。

2025-03-10 13:59:54 809

原创 2024年RAG关键技术大盘点(1月—4月)

2024年,检索增强生成(Retrieval-Augmented Generation, RAG) 已成为生成式AI领域最热门的技术之一。它不仅弥补了大模型“遗忘性强、幻觉严重”的短板,更在企业级应用、代码生成、金融风控、法律检索等场景中展现出巨大潜力。在这一年,RAG的技术栈迎来了哪些关键突破?本文会以时间为顺序盘点2024年1月到4月内RAG领域的关键技术突破。

2025-03-05 14:02:15 1081

原创 【职场杂谈】为什么坚持每天上班?

一个资深牛马打工人,每天坚持上班的核心原因,归根结底还是为了生存,解决最基本的马斯洛需求——吃饭、住房、养家糊口,毕竟没了经济来源,人寸步难行。 但如果说上班只是为了“活着”,那未免有点太过凄惨。所以,我们多少还有点别的追求:有的人想积累经验提升自己,不被时代淘汰;有的人在职场中寻找归属感,让自己不至于与社会脱节;还有的人享受解决问题、创造价值带来的成就感,甚至在加班的缝隙里偷偷憧憬“以后能躺平”。 所以,上班不仅是被迫的责任,也是一种选择——在现实和理想之间,找到自己的节奏,让生活既能维持生计,也不失点希

2025-03-04 14:50:03 332

原创 ComfyUI基本原理与源码解析

ComfyUI 是一个基于 Stable Diffusion 的 Node-based(基于节点流)的可视化界面,它允许用户通过模块化的方式构建、调整和执行 AI 生成流程。相较于传统的文本输入式 Stable Diffusion 界面,ComfyUI 采用了 节点图(Graph-based UI),使得整个 AI 生成流程更加透明、灵活,并便于调试和优化。

2025-03-03 14:50:42 1122

原创 【职场杂谈】程序员初入大厂职场信仰崩塌,如何破局?

初入职场时,我们都满怀激情与理想,想着能在一流的技术环境中沉淀自我,打造高质量的代码,成为一名真正的技术专家。然而,现实却给你泼了一盆冷水——可能被随机分配部门、面对屎山代码、无人指导、工作氛围压抑,这些问题让你感到信仰崩塌,甚至对未来失去了方向。如何破局,重新找回自信,坚定在职场上努力向前,是很多职场新人面临的共同难题。

2025-03-02 16:13:42 751

原创 如何最简单、通俗地理解Python的迭代器

编程中,迭代器是一个常见的工具,如果用非编程语言来描述,可以理解成迭代器就像一本书的书签,每次翻页都会记住你读到哪里,下一次继续从这个位置往下读,直到读完为止。在 Python 编程中,迭代器(Iterator)是一个很常见概念。很多初学者看到“迭代器”这个词,就会觉得它很复杂,其实它的核心思想非常简单。

2025-03-02 16:04:39 637

原创 AI 数据集生成和模型微调框架 Distilabel 高级指南:深度功能与最佳实践

本文详细介绍了Distilabel的高级功能和概念,包括数据集定义、Pipeline缓存、离线批量生成、Step间通过文件系统传输数和Ray集群运行Pipeline的方法,以及这些功能的最佳实践。

2025-02-28 14:37:02 1373

From Local to Global A Graph RAG Approach to Query-Focused Summarization.pdf

这篇论文是微软提出的一种创新的检索增强生成(RAG)方法,称为GraphRAG。该方法旨在增强大型语言模型(LLM)在处理私有文本语料库时的问答能力,特别是针对全局性问题,如“数据集的主要主题是什么?”。

2025-03-04

Which Economic Tasks are Performed with AI.pdf

最近,Anthropic 公司发布了一份研究报告——《Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations》,基于数百万次与 AI 助手 Claude 的匿名对话,分析了 AI 在不同职业中的使用情况。这一研究提供了前所未有的量化视角,揭示了 AI 在职场的真正影响。 这也说明,人工智能(AI)正在加速改变职场。无论是软件开发、技术写作,还是商业分析,AI 逐渐渗透到各个行业,为员工提供强大的辅助能力。然而,AI 并未完全取代人类,而是更多地承担“增强”角色,以提高生产力、减少重复性任务,并优化决策过程。

2025-02-20

DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data.pdf

这篇论文介绍了一种用于从非正式数学问题生成定理证明的方法。通过生成大规模 Lean 4 证明数据,提升 LLM 在形式化定理证明上的能力。论文中构建了包含 800 万条带证明数学陈述的合成数据集,并微调 DeepSeekMath 7B,使其在 Lean 4 miniF2F 测试中的证明生成准确率达 52%,超越 GPT-4(23%)。在 Lean 4 FIMO 基准测试中,模型成功证明 5 题,而 GPT-4 无一成功。研究表明,大规模合成数据能显著增强 LLM 的数学推理能力,展示了使用合成数据提升模型定理证明能力的潜力。

2025-02-20

生成式 AI 对批判性思维的影响:知识工作者调查中的认知努力减少与信心效应.pdf

这篇论文原名为《The Impact of Generative AI on Critical Thinking Self-Reported Reductions in Cognitive Effort and Confidence Effects From a Survey of Knowledge Workers》研究了生成式 AI(如 ChatGPT)对知识工作者批判性思维的影响。研究通过调查的方式收集数据,分析了人们在使用 AI 生成内容时的认知努力和自信心变化。主要发现包括: 1、认知努力减少:受访者普遍认为使用 AI 让任务变得更轻松,减少了思考的负担。 2、信心效应:尽管 AI 提供的信息并不总是准确,但使用者往往对 AI 生成的内容更有信心,甚至可能低估了自己的判断能力。 3、批判性思维的变化:长期依赖 AI 可能会削弱独立分析和批判性思考的能力,同时影响决策质量。 论文强调,虽然生成式 AI 可以提高工作效率,但也需要警惕其对思维能力的潜在负面影响。

2025-02-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除