损失函数与模型评估指标、目标函数的区别

文章探讨了线性回归中的模型A和B,通过SSE、MSE和RMSE评估模型性能。区分了损失函数(如SSELoss)与模型评估指标的区别,指出在目标函数中,损失函数可能还需考虑正则化项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于这样的简单的线性回归问题:

x y_true
1 2
3 4

我们可以假设方程为 y = w x + b y= wx+b y=wx+b
当w =1,b=-1时 (即y=x-1,称为模型A)

x y_true y_pred
1 2 0
3 4 2

当w =1,b=0时 (即y=x,称为模型B)

x y_true y_pred
1 2 1
3 4 3

我们可以用SSE(残差平方和)来评估模型A和B哪个输出结果更好,当然对于回归问题,也可以选取MSE(均方误差)和RMSE(均方根误差)来作为评估指标
S S E = ∑ 1 n ( y i ˉ − y i ) 2 SSE =\sum_1^n(\bar{y_i}-y_i)^2 SSE=1n(yiˉ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值