对于这样的简单的线性回归问题:
x | y_true |
---|---|
1 | 2 |
3 | 4 |
我们可以假设方程为 y = w x + b y= wx+b y=wx+b
当w =1,b=-1时 (即y=x-1,称为模型A)
x | y_true | y_pred |
---|---|---|
1 | 2 | 0 |
3 | 4 | 2 |
当w =1,b=0时 (即y=x,称为模型B)
x | y_true | y_pred |
---|---|---|
1 | 2 | 1 |
3 | 4 | 3 |
我们可以用SSE(残差平方和)来评估模型A和B哪个输出结果更好,当然对于回归问题,也可以选取MSE(均方误差)和RMSE(均方根误差)来作为评估指标
S S E = ∑ 1 n ( y i ˉ − y i ) 2 SSE =\sum_1^n(\bar{y_i}-y_i)^2 SSE=1∑n(yiˉ−