一文秒懂离差-变差-方差-标准差-误差-残差-偏差

离差、变差、方差、标准差用于测量一组数据的分散程度,或者说一个指标的波动程度。

1.离差(deviation):指的是任何一个观测值与平均值之间的差异,计算公式是观测值减去平均值。

eg: 假设我们有一组身高数据,如:160cm, 165cm, 170cm, 175cm, 180cm。我们计算这组数据的平均值为170cm。然后我们可以计算每个数据点与平均值之间的离差,比如第一个数据点的离差为-10cm(160-170),第二个数据点的离差为-5cm(165-170),以此类推。
注意:离差反映了某个“个体”偏离“中央”的程度,但千万不能叫“偏差”

2.变差(variation):指的是所有离差的平方和,也就是所有观测值与平均值之间的距离的平方的总和。

eg:上面的变差应该为= ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 (160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2 (160170)2+(160170)2+(160170)2+(160170)2+(160170)2

注意:变差可被看作是“总的离差”,因为把所有的离差累积起来可以全面反映数据的波动情况。但正如你所见,离差有正有负,求和之后恰好为零,因此数学家只好变通一下,先平方一下(消除负号),然后再求和。

3.方差(variance, VAR):指的是变差除以观测个数,也就是离差的平方和的均值。它反映了数据的整体波动程度

eg:上面的方差应该为= ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 5 \frac{(160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2}{5} 5(160170)2+(160170)2+(160170)2+(160170)2+(160170)2

注意:方差可被看作是“平均变差”,这样可以剔除数据规模的影响,更公平地比较两组数据的波动程度。

4.标准差(standard deviation, SD):指的是方差的平方根,也就是离差的平方和的均值的平方根。它也反映数据的整体波动程度。
eg:上面的方差应该为= ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 + ( 160 − 170 ) 2 5 \sqrt{\frac{(160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2+(160-170)^2}{5}} 5(160170)2+(160170)2+(160170)2+(160170)2+(160170)2

注意:方差和标准差都可以用来比较不同数据集的离散程度,但标准差更容易解释,因为它具有与原始数据相同的量纲。这意味着,如果我们有两个不同的数据集,它们的标准差可以直接用来比较它们的离散程度,而不需要担心数据的量纲不同导致的不确定性。

误差、残差、偏差,它们常被用来刻画数据的拟合程度。

5.误差(error):指的是观测值与真实值之间的差异,也就是测量结果与真实情况的偏离程度。

eg:我实际身高168,由于尺子变形或者没看仔细,测出身高是164,那么这个测量就存在误差-4cm=164-168。误差包括系统误差(尺子变形)和随机误差(没看仔细)两部分。

6.残差(residual):指的是估计值与观测值之间的差异,也就是模型预测结果与实际观测结果的偏离程度。

eg:我实测身高是168,假设我们建立了一个体重与身高的线性回归模型,用体重来预测身高。当我们用这个模型预测我的身高为169时,残差为-1cm=168cm-169cm。就是“残留”下来无法解释的部分。
在这里插入图片描述
图片来源:https://blog.csdn.net/qq_43382509/article/details/105179378

6.偏差(bias):指的是观测值与真实值之间的系统性偏离,或者估计值与观测值之间的系统性偏离。偏差反映的是测量或模型存在一定程度的系统误差。

eg: 假设我们要估计某个班级学生的平均身高。通过对一部分学生进行抽样调查后,我们得出平均身高为160cm。但实际上,由于我们只对一部分学生进行了调查,这个估计值可能存在偏差,即与班级所有学生的真实平均身高存在一定的偏离。这种偏差可能是由于抽样方法、样本容量等因素导致的。

通俗理解,误差反映了“你量的准不准”,残差反映了“你猜的准不准”,偏差说的是,“你量的或猜的总是偏高(或偏低)吗”

博图v16是一种常用的仿真软件,用于帮助工程师模拟PLC(可编程逻辑控制器)的行为和功能。加载PLC出错可能有以下几个可能的原因: 1. PLC程序错误:在加载PLC时,如果程序中存在错误或者逻辑错误,可能会导致加载出错。需要仔细检查PLC程序中的语法错误或逻辑错误,修复错误后重新加载。 2. 软件兼容性问题:博图v16仿真加载PLC可能与某些PLC型号不兼容,导致加载失败。需要检查博图v16与所使用的PLC型号之间的兼容性,如果不兼容,则需要尝试使用合适的仿真软件或者更新博图v16软件版本。 3. 硬件连接问题:如果PLC与计算机或仿真软件之间的连接存在问题,可能导致加载出错。需要检查PLC与计算机的连接方式和设置,确保连接正常。如果连接采用通信接口(例如串行口或以太网口),还需要检查通信接口的设置和参数。 4. 计算机性能问题:如果计算机的性能不足,可能导致加载PLC时出错。特别是在加载较为复杂的PLC程序时,计算机的处理能力可能不够,导致加载失败。需要确保计算机硬件性能足够,如果计算机配置较低,可以尝试使用更高性能的计算机。 总之,博图v16仿真加载PLC出错可能由于PLC程序错误、软件兼容性问题、硬件连接问题或计算机性能问题等原因引起。根据具体情况进行排查和处理,可以解决加载出错的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值