随机森林中每个树模型分裂时的特征选取方式
随机森林中每个树模型的每次分裂都是基于随机选取的特征子集进行分裂的。
具体来说,对于每个决策树,在每个节点的分裂过程中,随机森林算法会从原始特征集合中随机选择一个特征子集,然后从该子集中选取最优的分裂特征。这种方式可以减少模型的方差,使得模型更加鲁棒,防止模型出现过拟合的现象。同时,由于每棵树都是使用不同的特征子集进行分裂的,因此每棵树的结构都不同,可以提高模型的多样性,进一步提高模型的泛化能力。
需要注意的是,每次分裂时使用的特征子集大小是可以调整的,可以根据数据集的大小和特征的数量来选择合适的值。通常来说,特征子集的大小一般设定为 m \sqrt{m}