leetcode--找1-N中缺少的数字

这篇博客介绍了如何解决LeetCode上的两道题目:136.只出现一次的数字和448.找到所有数组中消失的数字。对于第一题,博主提出了使用异或大法找出数组中只出现一次的数字;对于第二题,博主探讨了通过改变数组元素正负号来标记已出现的值。同时,博客还提及了将十进制转换为二进制以及计算二进制1的个数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

136.只出现一次的数字
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
异或大法好
如果我们对 0 和二进制位做 XOR 运算,得到的仍然是这个二进制位
a⊕0=a
如果我们对相同的二进制位做 XOR 运算,返回的结果是 0
a⊕a=0
XOR 满足交换律和结合律
a⊕b⊕a=(a⊕a)⊕b=0⊕b=b
所以对数组的所有元素进行异或,得到的就是只有一次的数字

class Solution {    
	public int singleNumber(int[] nums) {        
		for(int i=1;i<nums.length;i++)        
		nums[0]^=nums[i];        
		return nums[0];    
	}
}

448.找到所有数组中消失的数字
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
这道题我本来想的是把i和a[i]对应,就是i=a[i],但是一遍遍历没法实现,因为不止一个少了的。其实这种思路就是类似于哈希表,目的就是要标记出现的值,所以不一定要用i=a[i]这种方法来标记,换来换去还挺麻烦,可以把对应位置的值变为负数,表示这个负数的下标的值出现过。

class Solution {    
	public List<Integer> findDisappearedNumbers(int[] nums) {        
		List<Integer>list=new ArrayList<>();        
		int temp=0;        
		for(int i=0;i<nums.length;i++)        
		{                            
			if(nums[Math.abs(nums[i])-1]>0)                
			nums[Math.abs(nums[i])-1]*=-1;                    
		}        
		for(int i=0;i<nums.length;i++)        
		{            
			if(nums[i]>0)            
			list.add(i+1);        
		}        
		return list;    
	}
}

十进制转二进制
String a=Integer.toBinaryString(int i);
数一个数二进制的1的个数
int a=Integer.bitCount(int b);
自己实现

int count=0;
while(b!=0)
{
	if(b%2==1)
	count++;
	b==b>>1;//向右移位
}

581.最短无序连续子数组
给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。
第一次整这么多循环,结果我这居然还是最优解法

class Solution {    
	public int findUnsortedSubarray(int[] nums) {                
		int i=0,j=nums.length-1,k=0;        
		while(i<nums.length-1)        
		{            
			if(nums[i+1]>=nums[i])            
			i++;            
			else break;        
		}        
		if(i==nums.length-1)        
		return 0;        
		while(j>=0)        
		{            
			if(nums[j-1]<=nums[j])            
			j--;            
			else break;        
		}        
		int min=nums[i],max=nums[j];        
		for(k=i;k<=j;k++)        
		{            
			min=Math.min(min,nums[k]);            
			max=Math.max(max,nums[k]);        
		}        
		for(k=0;k<=i;k++)        
		{            
			if(nums[k]>min)            
			break;        
		}        
		min=k;        
		for(k=nums.length-1;k>=j;k--)        
		{            
			if(nums[k]<max)            
			break;        
		}        
		max=k;        
		return max-min+1;    
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值