1. 语言模型
P
(
X
1
,
X
2
,
X
3
,
X
4
)
=
P
(
X
1
)
∗
P
(
X
2
∣
X
1
)
∗
P
(
X
3
∣
X
1
,
X
2
)
∗
P
(
X
4
∣
X
1
,
X
2
,
X
3
)
P(X_1,X_2,X_3,X_4)=P(X_1)*P(X_2|X_1)*P(X_3|X_1,X_2)*P(X_4|X_1,X_2,X_3)
P(X1,X2,X3,X4)=P(X1)∗P(X2∣X1)∗P(X3∣X1,X2)∗P(X4∣X1,X2,X3)
常见形式为N-Gram,每个词只与前N-1个词有关。
其他形式:最大熵、神经网络……
大词汇量:
- 不能为每个单词训练HMM,改为用每个音素训练一个HMM
HMM复合:
- 音素HMM按词典拼接成单词HMM
- 单词HMM与语言模型复合成语言HMM
语音识别系统结构
1990-2010该框架没有变化,只是打了很多补丁… - 上下文有关模型
- 区分式训练
- 说话人适应
- 二次打分
评价指标:词错误率