eaby面经二

java 同时被 2 个专栏收录
5 篇文章 0 订阅
3 篇文章 0 订阅

Sean JAVA面试:

1、项目:项目情况介绍,难点解决

2、Java基础:

4)String对象判等

**:

        情况1:

                String s1 = "a" + "b";

                String s2 = "ab";

答: 不相等,因为地址不等

        情况2:

                public void method(String s11, String s12) {

                    String s1 = s11 + s12;   //s11="a", s12="b"

                    String s2 = "ab";

                }

答: 不相等,因为地址不等

Sean Java面试题:k8s有哪些组件,分别是干什么的?
引用链接

你们在项目里怎么使用的k8s,具体描述一下,怎么new新的实例?

描述一下你最印象深刻的项目,有什么难点,你是怎么解决的?会问很细。

项目里redis集群是怎么样的?
引用链接
redis的三种集群方式
redis有三种集群方式:主从复制,哨兵模式和集群。

1.主从复制

主从复制原理:

从服务器连接主服务器,发送SYNC命令;
主服务器接收到SYNC命名后,开始执行BGSAVE命令生成RDB文件并使用缓冲区记录此后执行的所有写命令;
主服务器BGSAVE执行完后,向所有从服务器发送快照文件,并在发送期间继续记录被执行的写命令;
从服务器收到快照文件后丢弃所有旧数据,载入收到的快照;
主服务器快照发送完毕后开始向从服务器发送缓冲区中的写命令;
从服务器完成对快照的载入,开始接收命令请求,并执行来自主服务器缓冲区的写命令;(从服务器初始化完成)
主服务器每执行一个写命令就会向从服务器发送相同的写命令,从服务器接收并执行收到的写命令(从服务器初始化完成后的操作)
主从复制优缺点:

优点:

支持主从复制,主机会自动将数据同步到从机,可以进行读写分离
为了分载Master的读操作压力,Slave服务器可以为客户端提供只读操作的服务,写服务仍然必须由Master来完成
Slave同样可以接受其它Slaves的连接和同步请求,这样可以有效的分载Master的同步压力。
Master Server是以非阻塞的方式为Slaves提供服务。所以在Master-Slave同步期间,客户端仍然可以提交查询或修改请求。
Slave Server同样是以非阻塞的方式完成数据同步。在同步期间,如果有客户端提交查询请求,Redis则返回同步之前的数据
缺点:

Redis不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。
主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。
Redis较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。
2.哨兵模式

当主服务器中断服务后,可以将一个从服务器升级为主服务器,以便继续提供服务,但是这个过程需要人工手动来操作。 为此,Redis 2.8中提供了哨兵工具来实现自动化的系统监控和故障恢复功能。

哨兵的作用就是监控Redis系统的运行状况。它的功能包括以下两个。

(1)监控主服务器和从服务器是否正常运行。 
(2)主服务器出现故障时自动将从服务器转换为主服务器。

哨兵的工作方式:

每个Sentinel(哨兵)进程以每秒钟一次的频率向整个集群中的Master主服务器,Slave从服务器以及其他Sentinel(哨兵)进程发送一个 PING 命令。
如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel(哨兵)进程标记为主观下线(SDOWN)
如果一个Master主服务器被标记为主观下线(SDOWN),则正在监视这个Master主服务器的所有 Sentinel(哨兵)进程要以每秒一次的频率确认Master主服务器的确进入了主观下线状态
当有足够数量的 Sentinel(哨兵)进程(大于等于配置文件指定的值)在指定的时间范围内确认Master主服务器进入了主观下线状态(SDOWN), 则Master主服务器会被标记为客观下线(ODOWN)
在一般情况下, 每个 Sentinel(哨兵)进程会以每 10 秒一次的频率向集群中的所有Master主服务器、Slave从服务器发送 INFO 命令。
当Master主服务器被 Sentinel(哨兵)进程标记为客观下线(ODOWN)时,Sentinel(哨兵)进程向下线的 Master主服务器的所有 Slave从服务器发送 INFO 命令的频率会从 10 秒一次改为每秒一次。
若没有足够数量的 Sentinel(哨兵)进程同意 Master主服务器下线, Master主服务器的客观下线状态就会被移除。若 Master主服务器重新向 Sentinel(哨兵)进程发送 PING 命令返回有效回复,Master主服务器的主观下线状态就会被移除。
哨兵模式的优缺点

优点:

哨兵模式是基于主从模式的,所有主从的优点,哨兵模式都具有。
主从可以自动切换,系统更健壮,可用性更高。
缺点:

Redis较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。
3.Redis-Cluster集群

redis的哨兵模式基本已经可以实现高可用,读写分离 ,但是在这种模式下每台redis服务器都存储相同的数据,很浪费内存,所以在redis3.0上加入了cluster模式,实现的redis的分布式存储,也就是说每台redis节点上存储不同的内容。

Redis-Cluster采用无中心结构,它的特点如下:

所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽。

节点的fail是通过集群中超过半数的节点检测失效时才生效。

客户端与redis节点直连,不需要中间代理层.客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可。

工作方式:

在redis的每一个节点上,都有这么两个东西,一个是插槽(slot),它的的取值范围是:0-16383。还有一个就是cluster,可以理解为是一个集群管理的插件。当我们的存取的key到达的时候,redis会根据crc16的算法得出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。

为了保证高可用,redis-cluster集群引入了主从模式,一个主节点对应一个或者多个从节点,当主节点宕机的时候,就会启用从节点。当其它主节点ping一个主节点A时,如果半数以上的主节点与A通信超时,那么认为主节点A宕机了。如果主节点A和它的从节点A1都宕机了,那么该集群就无法再提供服务了。

算法题;寻找平衡点,有一个数组,对于数组里某一个元素,他左边的数之和等于右边数的和,称这个元素为平衡点。找出数组的所有平衡点。 讲出思路,会问复杂度。

Sean面试总结:老外video:spring相关知识,数据库连接池,算法题是旋转过的排序数组找target值,gc。Sean:top k问题。手写类和方法,还有几个follow up问题。分布式cap原理和base原理,最终一致性,一致性哈希

题目(算法题是旋转过的排序数组找target值)
假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,0,1,2,2,5,6] 可能变为 [2,5,6,0,0,1,2] )。
编写一个函数来判断给定的目标值是否存在于数组中。若存在返回 true,否则返回 false。

示例 1:

输入: nums = [2,5,6,0,0,1,2], target = 0
输出: true
1
2
示例 2:

输入: nums = [2,5,6,0,0,1,2], target = 3
输出: false

代码实现:

class Solution {
    public boolean search(int[] nums, int target) {
     if (nums == null || nums.length == 0) {
            return false;
        } 
        if (nums.length == 1 && nums[0] == target) {
            return true;
        } else if (nums.length == 1 && nums[0] != target) {
            return false;
        }
        
        // Arrays.sort(nums);
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] == target) {
                return true;
            }
        }
        return false;
    }
}

作者:fan23_0708
来源:CSDN
原文:https://blog.csdn.net/sinat_35050808/article/details/84141189
版权声明:本文为博主原创文章,转载请附上博文链接!

Top K问题在数据分析中非常普遍的一个问题(在面试中也经常被问到),比如:
从20亿个数字的文本中,找出最大的前100个。
解决Top K问题有两种思路,
最直观:小顶堆(大顶堆 -> 最小100个数);
较高效:Quick Select算法。
LeetCode上有一个问题215. Kth Largest Element in an Array,类似于Top K问题。


  1. 小顶堆(min-heap)有个重要的性质——每个结点的值均不大于其左右孩子结点的值,则堆顶元素即为整个堆的最小值。JDK中PriorityQueue实现了数据结构堆,通过指定comparator字段来表示小顶堆或大顶堆,默认为null,表示自然序(natural ordering)。

小顶堆解决Top K问题的思路:小顶堆维护当前扫描到的最大100个数,其后每一次的扫描到的元素,若大于堆顶,则入堆,然后删除堆顶;依此往复,直至扫描完所有元素。Java实现第K大整数代码如下:

public int findKthLargest(int[] nums, int k) {
  PriorityQueue<Integer> minQueue = new PriorityQueue<>(k);
  for (int num : nums) {
    if (minQueue.size() < k || num > minQueue.peek())
      minQueue.offer(num);
    if (minQueue.size() > k)
      minQueue.poll();
  }
  return minQueue.peek();
}
  1. Quick Select
    Quick Select [1]脱胎于快排(Quick Sort),两个算法的作者都是Hoare,并且思想也非常接近:选取一个基准元素pivot,将数组切分(partition)为两个子数组,比pivot大的扔左子数组,比pivot小的扔右子数组,然后递推地切分子数组。Quick Select不同于Quick Sort的是其没有对每个子数组做切分,而是对目标子数组做切分。其次,Quick Select与Quick Sort一样,是一个不稳定的算法;pivot选取直接影响了算法的好坏,worst case下的时间复杂度达到了O(n2)。下面给出Quick Sort的Java实现:
public void quickSort(int arr[], int left, int right) {
  if (left >= right) return;
  int index = partition(arr, left, right);
  quickSort(arr, left, index - 1);
  quickSort(arr, index + 1, right);
}

// partition subarray a[left..right] so that a[left..j-1] >= a[j] >= a[j+1..right]
// and return index j
private int partition(int arr[], int left, int right) {
  int i = left, j = right + 1, pivot = arr[left];
  while (true) {
    while (i < right && arr[++i] > pivot)
      if (i == right) break;
    while (j > left && arr[--j] < pivot)
      if (j == left) break;
    if (i >= j) break;
    swap(arr, i, j);
  }
  swap(arr, left, j);  // swap pivot and a[j]
  return j;
}

private void swap(int[] arr, int i, int j) {
  int tmp = arr[i];
  arr[i] = arr[j];
  arr[j] = tmp;
}

Quick Select的目标是找出第k大元素,所以

若切分后的左子数组的长度 > k,则第k大元素必出现在左子数组中;
若切分后的左子数组的长度 = k-1,则第k大元素为pivot;
若上述两个条件均不满足,则第k大元素必出现在右子数组中。
Quick Select的Java实现如下:

public int findKthLargest(int[] nums, int k) {
  return quickSelect(nums, k, 0, nums.length - 1);
}

// quick select to find the kth-largest element
public int quickSelect(int[] arr, int k, int left, int right) {
  if (left == right) return arr[right];
  int index = partition(arr, left, right);
  if (index - left + 1 > k)
    return quickSelect(arr, k, left, index - 1);
  else if (index - left + 1 == k)
    return arr[index];
  else
    return quickSelect(arr, k - index + left - 1, index + 1, right);

}

上面给出的代码都是求解第k大元素;若想要得到Top K元素,仅需要将代码做稍微的修改:比如,扫描完成后的小顶堆对应于Top K,Quick Select算法用中间变量保存Top K元素。

**

分布式cap原理和base原理,最终一致性,一致性哈希

**
引用链接
引用最终一致性,一致性哈希

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:技术工厂 设计师:CSDN官方博客 返回首页

打赏作者

晒太阳的斑马

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值