Dynamic 3D Gaze from Afar: Deep Gaze Estimation from Temporal Eye-Head-Body Coordination CVPR 2022

原文链接
数据集代码
概述:在监控等场景下,几乎看不清眼部图像,作者建立了这样的3D视线估计的数据集。并且设计了一个联合考虑头部姿态和身体姿态关系,并且结合不确定性估计时序信息的网络。
在这里插入图片描述
VMF
VMF是一个用于概率分布的统计模型,它是基于多元正态分布在单位球面上的推广。在von Mises-Fisher分布中,每个数据点是一个在单位球面上的向量,而不是在欧几里得空间中的向量。
在这里插入图片描述
式中, μ \mu μ代表预测值, κ \kappa κ代表不确定度
损失函数
在这里插入图片描述
交替训练 μ \mu μ, κ \kappa κ
κ \kappa κ用于加权
Head and Body Network
采用降分辨率的人体姿态数据集AGORA进行训练,得到头部和身体姿态以及它们的不确定性
Head–Body Conditional Temporal Gaze Prior
多帧加权的头部身体姿态6维向量输入时序网络预测得到视线
Opportunistic Eye Appearance Integration
不确定度加权融合脸部预测得到的视线
Multi-view Gaze Estimation
在这里插入图片描述
加权融合多视角得到的估计视线(VMF极大似然估计)
实验结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值