深度学习
隐藏玩家
这个作者很懒,什么都没留下…
展开
-
神经网络的风格转换
what is neural style transfer?什么是神经风格转换。sample: 转换图像风格。深度卷积网格Visualizing what a deep network is learning?Neural style transfer cost functiondefine cost function: J(G)=αJcontent(C,G)+βJStyle(...原创 2019-10-20 15:23:25 · 326 阅读 · 0 评论 -
《深度学习》-线代基础
前言:花了一个多月参加一个比赛,真的是心力交瘁,累!刚开始接触到深度学习的时候就知道花书了,看过一眼,但当时初见难免对这本算法有些畏惧,如今几个月过去了,对部分的算法也有些许的了解,抽出闲暇时间,休闲读。主要是大牛写的书,希望读的时候能有一个思维的跳跃。我将怀着一颗敬畏之心阅读每一本书。线性相关和生成子空间公式引入:Ax=∑ixiA:,iAx = \sum_ix_iA_{:,i}Ax=i∑...原创 2019-10-20 15:22:46 · 328 阅读 · 0 评论 -
《深度学习》- 概率与信息论
概率论关于概率:概率直接与事件发生的频率相联系,被称为频率派概率(frequentist probability);还有一种例如医生诊断病人的病症,此时的概率可以表示为一种信任度(degree of belief)涉及到了确定性水平,被称为贝叶斯概率(Bayesian probablity)。归一化:∑x∈x\sum_{x\in x}∑x∈x P(x) = 1这条性质被称为归一化,...原创 2019-10-20 15:22:28 · 209 阅读 · 0 评论 -
《深度学习》-数值计算
上溢下溢与softmax函数下溢:当接近零的数被四舍五入为零时发生下溢。上溢:极具破坏力的数字错误形式是上溢。softmax函数公式softmax(x)i=exp(xi)∑j=1nexp(xj)softmax(x)_i = \frac{exp(x_i)}{\sum_{j=1}^nexp(x_j)}softmax(x)i=∑j=1nexp(xj)exp(xi)上溢和下溢可以通...原创 2019-10-20 15:22:06 · 243 阅读 · 0 评论 -
计算机视觉基础
前言由于个人目前对于计算机视觉有比较大的兴趣,想写一篇关于CNN的文章总结学到的东西,参考花书,以及一些比较权威的视频课。基本概念卷积 :是对两个实变函数的一种算术运算。卷积神经网络一般是用来处理具有类似网格结构的数据的神经网络,例如时间序列,和图像素数据。关于时间序列一般公式:s(t)=(x∗w)(t)s(t) = (x*w)(t)s(t)=(x∗w)(t)星号表示卷积运算。x...原创 2019-10-06 21:10:49 · 260 阅读 · 0 评论 -
神经元模型
线性神经元Linear Neuron 是指输出和输入呈线性关系的一种简单的模型。他实现的是输入信息的完全传到,在现实中,由于缺乏对信息的整合而基本不被使用,仅作为一个概念基础。线型阈值神经元能够实现简单地逻辑运算机制,就我个人而言目前还未在教材中看到应用。Sigmoid 神经元Sigmoid神经元可以使输出平滑的限制在0~1的范围内,靠近0的范围接近线性,远离0的区域为非线性,可以将实数...原创 2019-09-26 15:57:15 · 2735 阅读 · 0 评论 -
深度学习优化算法
前言个人对于深度学习的优化一直是未知,所以对此一直充满了疑问,今天休闲读的时候刚好看到书上有关于优化算法的汇总,为方便今后查阅将它copy下来。SGD(随机梯度下降算法)参数: 学习率 η\etaη初始化: θ\thetaθwhile 停止条件未满足 do:从 训练数据中抽取m条数据{x(1),x(2),x(3),...,x(m)}\{x^{(1)}, x^{(2)}, x^{(3)...原创 2019-09-26 19:20:25 · 152 阅读 · 0 评论 -
深度学习训练技巧
数据预处理数据预处理在传统机器学习中非常重要,在深度学习的应用中同样重要,事实上,将数据进行归一化(normalization)或者白化(Whitening)处理后,算法效果往往可以得到明显提升。实际上,预处理往往和所采取的具体模型以及面对的具体数据相关,采用哪种预处理方法需要结合实际进行考虑。归一化减均值最简单的归一化方法,就是所有样本都减去总体数据的样本的平均值,这种初始化方法适用...原创 2019-09-27 16:29:21 · 425 阅读 · 0 评论 -
损失函数,神经网络调权重
introduce原创 2019-10-06 12:33:52 · 3834 阅读 · 1 评论