二叉树的基本运算(数据结构学习笔记)


采用二叉链存储结构讨论二叉树的基本运算算法。

基本运算

二叉树的基本运算包括:

  • 创建二叉树
  • 销毁二叉树
  • 找孩子结点 LchildNode§ 和 RchildNode§
  • 求树高度 BTHeight(b)
  • 输出二叉树 DispBTree(b) :以括号表示法输出一颗二叉树 b
    (采用二叉链存储讨论二叉树的基本运算)

创建二叉树 CreateBTNode(*b,*str)

将采用括号表示法表示的二叉树字符串str来创建一颗二叉树,

算法分析
  • “(” 意味着一棵左子树开始
  • “(” 意味着一颗子树结束
  • “,” 意味着一颗右子树开始
  • 单个字符:结点的值
创建二叉树的过程:

先构造根节点 N,再构造左子树,后构造右子树。
当左子树构造完后,需要重新找到根节点N,所以要保存 N
同时,结点是按照最近原则匹配的,因此需要用来保存。

① 当 ch=’(’ 时:则将前面刚创建的结点作为双亲结点进栈,并置 k=1,表示开始处理左孩子结点;
② 当 ch=’)’ 时:表示栈顶结点的左、右孩子结点处理完毕,退栈;
③ 当 ch=’,’ 时:表示开始处理右孩子节点,置 k=2
④ 当 ch 为单个字符时:
创建结点 *p 用于存放 ch;
当 k=1 时,将 *p 结点作为栈顶结点的左孩子结点;
当 k=2 时,将 *p 结点作为栈顶结点的右孩子结点。

创建二叉树图示过程:

对于括号表示的二叉树:A ( B ( D ( , G ) ) , C ( E , F ) )

当指针指到 ‘A’ 时,建立结点 A ,并用 b 保存根节点:

在这里插入图片描述

当指针指向 ‘(’ 时,将上一结点 ‘A’ 入栈,并将 k=1,准备处理上一结点(即栈顶元素 ‘A’ )的左孩子结点:

在这里插入图片描述

当指针指向 ‘B’ 时,建立结点 B,并将当前栈顶元素的左孩子指针指向 B 结点:

在这里插入图片描述

当指针指向 ‘(’ 时,将上一结点 ‘B’ 入栈,并将 k=1,准备处理上一结点(即栈顶元素 ‘B’ )的左孩子结点:

在这里插入图片描述

当指针指向 ‘D’ 时,建立结点 D,并将当前栈顶元素的左孩子指针指向 D 结点:

在这里插入图片描述

当指针指向 ‘(’ 时,将上一结点入栈 ‘D’,并将 k=1,准备处理上一结点(即栈顶元素 ‘D’ )的左孩子结点:

在这里插入图片描述

当指针指向 ‘,’ 时,将 k=2,准备处理上一结点(即栈顶元素 ‘D’ )的右孩子结点:

在这里插入图片描述

当指针指向 ‘G’ 时,建立结点 G,并将当前栈顶元素的右孩子指针指向 G 结点:

在这里插入图片描述

当指针指向 ‘)’ 时,意味着该层子树构建完毕,将栈顶元素 ‘C’ 退栈:

在这里插入图片描述

当指针指向 ‘)’ 时,意味着该层子树构建完毕,将栈顶元素 ‘B’ 退栈:

10

当指针指向 ‘,’ 时,将 k=2,准备处理上一结点(即栈顶元素 ‘A’ )的右孩子结点:

11

当指针指向 ‘C’ 时,建立结点 C,并将当前栈顶元素的右孩子指针指向 C 结点:

12

当指针指向 ‘(’ 时,将上一结点 ‘C’ 入栈,并将 k=1,准备处理上一结点(即栈顶元素 ‘C’ )的左孩子结点:

在这里插入图片描述

后面过程依次进行。

算法代码
void CreateBTNode(BTNode *&b,char *str) //将 str 转化为二叉链 b
{
    BTNode *St[MaxSize];    //栈
    BTNode *p;              //用于新建结点

    int top=-1;             //栈顶指针
    int k,j=0;
    char ch;

    b=NULL;                 //建立的二叉链初始时为空
    ch=str[j];

    while(ch!='\0'){
        switch(ch){
            case '(':{
                top++;  St[top]=p;  //进栈操作
                k=1;        //准备处理左孩子
                break;
            }
            case ')':{
                top--;      //退栈操作
                break;
            }
            case ',':{
                k=2;        //准备处理右孩子
                break;
            }
            default:{       //建立结点并与栈顶结点连接关系
                p=(BTNode *)malloc(sizeof(BTNode));
                p->data=ch;
                p->lchild=p->rchild=NULL;
                if(b==NULL) // p 为二叉树的根节点
                    b=p;    // b 用于存储根节点
                else{       //已建立二叉树根节点
                    switch(k){
                        case 1:{
                            St[top]->lchild=p;  //栈顶元素的左孩子链接新建节点
                            break;
                        }
                        case 2:{
                            St[top]->rchild=p;  //栈顶元素的右孩子链接新建节点
                            break;
                        }
                    }
                }
            }
            j++;    ch=str[j];      //继续向后搜索
        }
    }
}

销毁二叉链 DestroyBT(*b)

设 f(b) 销毁二叉链 b 为大问题
则 f(b->lchild) 销毁左子树, f(b->rchild) 销毁右子树为两个小问题

  • 因此用递归的方法来销毁二叉树!

在这里插入图片描述

当 b=NULL 时,f(b) 不做任何事
当 b!=NULL 时,f(b) = f(b->lchild),f(b->rchild)释放 *b 结点

算法代码
void DestroyBT(BTNode *&b)
{
    if(b==NULL)                 //子树为空
        return;
    else{
        DestroyBT(b->lchild);   //先销毁左子树
        DestroyBT(b->rchild);   //再销毁右子树
        free(b);                //剩下最后一个结点*b,直接释放
    }
}

查找结点 FindNode(*b,x)

销毁二叉链算法同理
设 f(b) 二叉链 b 去查找结点 x 为大问题
则 f(b->lchild) 去查找结点 x , f(b->rchild) 去查找结点 x 为两个小问题

  • 同样用递归的方法来查找结点 x

在这里插入图片描述

当 b=NULL 时,f(b,x) = NULL
当 b->data=x 时,f(b,x) = b
当在左子树找到了,即 p=f(b->lchild,x) 并且p!=NULL 时,f(b,x) = p;
其他情况,f(b,x) = f(p->rchild,x)

算法代码
BTNode *FindNode(BTNode *b,ElemType x)  //函数定义为 BTNode * 因为最后返回结点x
{
    if(b==NULL)                         //当二叉树为空时,返回空结点NULL
        return NULL;
    else if(b->data==x)                 //当二叉树的根节点就是要找的 x 结点时,返回根节点
        return b;
    else{                               
        p=FindNode(b->lchild,x);        //否则就在左子树中寻找结点 x
        if(p!=NULL)                     //在左子树中找到了 x 结点
            return p;                   //返回左子树中的 p 结点
        else
            return FindNode(b->rchild,x);   //若都没找到,则最后无论右子树找没找到且二叉树不为空时,都返回值,找到返回结点值,没找到返回空NULL。
    }
}

找孩子结点 LchildNode§和RchildNode§

直接返回*p结点的左孩子结点或右孩子结点的指针。

算法代码
BTNode *LchildNode(BTNode *p)
{
    return p->lchild;
}

BTNode *RchildNode(BTNode *p)
{
    return p->rchild;
}

求二叉树高度 BTNodeDepth(*b)

使用递归算法,大问题化为小问题解决。

在这里插入图片描述

当 b=NULL 时,f(b)=0
其他情况,f(b) = MAX{f (b->lchild), f(b->rchild) } + 1 //加一是因为根节点存在,使得高度为子树高度加一。

算法代码
int BTNodeDepth(BTNode *b)
{
    int lchilddep,rchilddep;        //记录左右子树的高度
    if(b==NULL)         //二叉树为空
        return 0;
    else{
        lchilddep=BTNodeDepth(b->lchild);                       //递归求左子树高度
        rchilddep=BTNodeDepth(b->rchild);                       //递归求右子树高度
        return (lchilddep>rchilddep)?(lchild+1):(rchild+1);     //左、右子树高度对比求出最高高度
    }
}

输出二叉树 DispBTNode(*b)

将二叉树的二叉链转化为二叉树的括号表示

在这里插入图片描述

算法代码
void DispBTNode(BTNode *b)
{
    if(b!=NULL){
        printf("%c",b->data);                       //首先输出根节点
        if(b->lchild!=NULL||b->rchild!=NULL){       //左子树或者右子树不为空时
            printf("(");                            //先输出左括号 '(',准备输出左子树
            DispBTNode(b->lchild);                  //递归输出左子树
            if(b->rchild!=NULL)                     //右子树不为空时
                printf(",");                        //输出逗号 ',',准备输出右子树
            DispBTNode(b->rchild);                  //递归输出右子树
            printf(")");                            //括号结束该层子树的输出
        }
    }
}
  • 学习数据结构教程(第五版)——李春葆教授主编
  • 图片来源于MOOC,数据结构——武汉大学——李春葆教授
  • (如若侵权可联系QQ删除)
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. C 语言中的指针和内存泄漏 5 2. C语言难点分析整理 10 3. C语言难点 18 4. C/C++实现冒泡排序算法 32 5. C++中指针和引用的区别 35 6. const char*, char const*, char*const的区别 36 7. C中可变参数函数实现 38 8. C程序内存中组成部分 41 9. C编程拾粹 42 10. C语言中实现数组的动态增长 44 11. C语言中的位运算 46 12. 浮点数的存储格式: 50 13. 位域 58 14. C语言函数二维数组传递方法 64 15. C语言复杂表达式的执行步骤 66 16. C语言字符串函数大全 68 17. C语言宏定义技巧 89 18. C语言实现动态数组 100 19. C语言笔试-运算符和表达式 104 20. C语言编程准则之稳定篇 107 21. C语言编程常见问题分析 108 22. C语言编程易犯毛病集合 112 23. C语言缺陷与陷阱(笔记) 119 24. C语言防止缓冲区溢出方法 126 25. C语言高效编程秘籍 128 26. C运算符优先级口诀 133 27. do/while(0)的妙用 134 28. exit()和return()的区别 140 29. exit子程序终止函数与return的差别 141 30. extern与static存储空间矛盾 145 31. PC-Lint与C\C++代码质量 147 32. spirntf函数使用大全 158 33. 二叉树数据结构 167 34. 位运算应用口诀和实例 170 35. 内存对齐与ANSI C中struct内存布局 173 36. 冒泡和选择排序实现 180 37. 函数指针数组与返回数组指针的函数 186 38. 右左法则- 复杂指针解析 189 39. 回车和换行的区别 192 40. 堆和堆栈的区别 194 41. 堆和堆栈的区别 198 42. 如何写出专业的C头文件 202 43. 打造最快的Hash表 207 44. 指针与数组学习笔记 222 45. 数组不是指针 224 46. 标准C中字符串分割的方法 228 47. 汉诺塔源码 231 48. 洗牌算法 234 49. 深入理解C语言指针的奥秘 236 50. 游戏外挂的编写原理 254 51. 程序实例分析-为什么会陷入死循环 258 52. 空指针究竟指向了内存的哪个地方 260 53. 算术表达式的计算 265 54. 结构体对齐的具体含义 269 55. 连连看AI算法 274 56. 连连看寻路算法的思路 283 57. 重新认识:指向函数的指针 288 58. 链表的源码 291 59. 高质量的子程序 295 60. 高级C语言程序员测试必过的十六道最佳题目+答案详解 297 61. C语言常见错误 320 62. 超强的指针学习笔记 325 63. 程序员之路──关于代码风格 343 64. 指针、结构体、联合体的安全规范 346 65. C指针讲解 352 66. 关于指向指针指针 368 67. C/C++ 误区一:void main() 373 68. C/C++ 误区二:fflush(stdin) 376 69. C/C++ 误区三:强制转换 malloc() 的返回值 380 70. C/C++ 误区四:char c = getchar(); 381 71. C/C++ 误区五:检查 new 的返回值 383 72. C 是 C++ 的子集吗? 384 73. C和C++的区别是什么? 387 74. 无条件循环 388 75. 产生随机数的方法 389 76. 顺序表及其操作 390 77. 单链表的实现及其操作 391 78. 双向链表 395 79. 程序员数据结构笔记 399 80. Hashtable和HashMap的区别 408 81. hash 表学习笔记 410 82. C程序设计常用算法源代码 412 83. C语言有头结点链表的经典实现 419 84. C语言惠通面试题 428 85. C语言常用宏定义 450
目录 1. C 语言中的指针和内存泄漏 5 2. C语言难点分析整理 10 3. C语言难点 18 4. C/C++实现冒泡排序算法 32 5. C++中指针和引用的区别 35 6. const char*, char const*, char*const的区别 36 7. C中可变参数函数实现 38 8. C程序内存中组成部分 41 9. C编程拾粹 42 10. C语言中实现数组的动态增长 44 11. C语言中的位运算 46 12. 浮点数的存储格式: 50 13. 位域 58 14. C语言函数二维数组传递方法 64 15. C语言复杂表达式的执行步骤 66 16. C语言字符串函数大全 68 17. C语言宏定义技巧 89 18. C语言实现动态数组 100 19. C语言笔试-运算符和表达式 104 20. C语言编程准则之稳定篇 107 21. C语言编程常见问题分析 108 22. C语言编程易犯毛病集合 112 23. C语言缺陷与陷阱(笔记) 119 24. C语言防止缓冲区溢出方法 126 25. C语言高效编程秘籍 128 26. C运算符优先级口诀 133 27. do/while(0)的妙用 134 28. exit()和return()的区别 140 29. exit子程序终止函数与return的差别 141 30. extern与static存储空间矛盾 145 31. PC-Lint与C\C++代码质量 147 32. spirntf函数使用大全 158 33. 二叉树数据结构 167 34. 位运算应用口诀和实例 170 35. 内存对齐与ANSI C中struct内存布局 173 36. 冒泡和选择排序实现 180 37. 函数指针数组与返回数组指针的函数 186 38. 右左法则- 复杂指针解析 189 39. 回车和换行的区别 192 40. 堆和堆栈的区别 194 41. 堆和堆栈的区别 198 42. 如何写出专业的C头文件 202 43. 打造最快的Hash表 207 44. 指针与数组学习笔记 222 45. 数组不是指针 224 46. 标准C中字符串分割的方法 228 47. 汉诺塔源码 231 48. 洗牌算法 234 49. 深入理解C语言指针的奥秘 236 50. 游戏外挂的编写原理 254 51. 程序实例分析-为什么会陷入死循环 258 52. 空指针究竟指向了内存的哪个地方 260 53. 算术表达式的计算 265 54. 结构体对齐的具体含义 269 55. 连连看AI算法 274 56. 连连看寻路算法的思路 283 57. 重新认识:指向函数的指针 288 58. 链表的源码 291 59. 高质量的子程序 295 60. 高级C语言程序员测试必过的十六道最佳题目+答案详解 297 61. C语言常见错误 320 62. 超强的指针学习笔记 325 63. 程序员之路──关于代码风格 343 64. 指针、结构体、联合体的安全规范 346 65. C指针讲解 352 66. 关于指向指针指针 368 67. C/C++ 误区一:void main() 373 68. C/C++ 误区二:fflush(stdin) 376 69. C/C++ 误区三:强制转换 malloc() 的返回值 380 70. C/C++ 误区四:char c = getchar(); 381 71. C/C++ 误区五:检查 new 的返回值 383 72. C 是 C++ 的子集吗? 384 73. C和C++的区别是什么? 387 74. 无条件循环 388 75. 产生随机数的方法 389 76. 顺序表及其操作 390 77. 单链表的实现及其操作 391 78. 双向链表 395 79. 程序员数据结构笔记 399 80. Hashtable和HashMap的区别 408 81. hash 表学习笔记 410 82. C程序设计常用算法源代码 412 83. C语言有头结点链表的经典实现 419 84. C语言惠通面试题 428 85. C语言常用宏定义 450
二叉树基本运算程序包括二叉树的创建、遍历、查找、插入、删除等操作。下面是一个简单的二叉树基本运算程序的示例: ```python # 定义二叉树节点类 class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None # 创建二叉树 def create_tree(s): if not s: return None stack = [] root = None is_left = True for i in s: if i == '(': stack.append(node) is_left = True elif i == ',': is_left = False elif i == ')': stack.pop() else: node = TreeNode(i) if not root: root = node elif is_left: stack[-1].left = node else: stack[-1].right = node return root # 前序遍历 def preorder_traversal(root): if not root: return print(root.val, end=' ') preorder_traversal(root.left) preorder_traversal(root.right) # 中序遍历 def inorder_traversal(root): if not root: return inorder_traversal(root.left) print(root.val, end=' ') inorder_traversal(root.right) # 后序遍历 def postorder_traversal(root): if not root: return postorder_traversal(root.left) postorder_traversal(root.right) print(root.val, end=' ') # 查找节点 def find_node(root, val): if not root: return None if root.val == val: return root left = find_node(root.left, val) if left: return left right = find_node(root.right, val) if right: return right return None # 插入节点 def insert_node(root, val): if not root: return TreeNode(val) if not root.left: root.left = TreeNode(val) elif not root.right: root.right = TreeNode(val) else: insert_node(root.left, val) return root # 删除节点 def delete_node(root, val): if not root: return None if root.val == val: if not root.left: return root.right if not root.right: return root.left min_node = root.right while min_node.left: min_node = min_node.left root.val = min_node.val root.right = delete_node(root.right, min_node.val) elif root.val > val: root.left = delete_node(root.left, val) else: root.right = delete_node(root.right, val) return root # 获取二叉树高度 def get_height(root): if not root: return 0 left_height = get_height(root.left) right_height = get_height(root.right) return max(left_height, right_height) + 1 # 释放二叉树 def free_tree(root): if not root: return free_tree(root.left) free_tree(root.right) del root # 测试 s = "A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))" root = create_tree(s) print("前序遍历:", end='') preorder_traversal(root) print() print("中序遍历:", end='') inorder_traversal(root) print() print("后序遍历:", end='') postorder_traversal(root) print() node = find_node(root, 'H') if node: print("H结点的左孩子结点值:", node.left.val) print("H结点的右孩子结点值:", node.right.val) print("二叉树的高度:", get_height(root)) root = delete_node(root, 'H') print("删除H结点后的中序遍历:", end='') inorder_traversal(root) print() free_tree(root) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值