题目描述
uim
神犇拿到了uoi
的ra
(镭牌)后,立刻拉着基友小A
到了一家……餐馆,很低端的那种。
uim
指着墙上的价目表(太低级了没有菜单),说:“随便点”。
不过uim
由于买了一些辅(e)辅(ro)书
,口袋里只剩 M 元 ( M ≤ 10000 )。
餐馆虽低端,但是菜品种类不少,有 N 种 ( N ≤ 100 ),第 i 种卖 ai 元 ( a_i ≤ 1000 )。
由于是很低端的餐馆,所以每种菜只有一份。
小A
奉行“不把钱吃光不罢休”,所以他点单一定刚好吧uim
身上所有钱花完。他想知道有多少种点菜方法。
由于小A
肚子太饿,所以最多只能等待1秒。
输入格式
第一行是两个数字,表示 N 和 M。
第二行起 N 个正数 ai(可以有相同的数字,每个数字均在1000以内)。
输出格式
一个正整数,表示点菜方案数,保证答案的范围在int之内。
输入
4 4
1 1 2 2
输出
3
算法分析
注意这道题与01背包的区别在于这道题需要求出刚好花完 M 元的点菜方案
解题算法有两种(重点讲dp):
- 1、用dfs深搜去解决这个问题,遍历所有的菜品,将最后菜品总价等于 M 的所有方案统计起来,但是这个算法会存在超时风险。(由于
小A
肚子太饿,所以最多只能等待1秒。) - 2、用dp动态规划解决,状态为前 i 种菜品中选择不大于价格 j 元的点菜方案数。
- 这道题dp有三个情况需要去考虑
- (1) 当第 i 个菜的价格刚好等于价格 j 时:
if(v[i]==j) dp[i][j]=dp[i-1][j]+1
- (2) 当第 i 个菜的价格大于价格 j 时:
if(v[i]>j) dp[i][j]=dp[i-1][j]
- (3) 当第 i 个菜的价格小于价格 j 时:
if(v[i]<j) dp[i][j]=dp[i-1][j]+dp[i-1][j-v[i]];
解题标程(二维dp)
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int v[105];
int dp[105][10005];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++)
cin >> v[i];
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
if(v[i]==j)
dp[i][j]=dp[i-1][j]+1;
else if(v[i]>j)
dp[i][j]=dp[i-1][j];
else
dp[i][j]=dp[i-1][j]+dp[i-1][j-v[i]];
}
}
cout << dp[n][m] << endl;
return 0;
}
算法优化
上述算法是用二维dp数组去进行dp表的计算,这里可以将二维dp表转化为一维dp表
- 图片来源:(侵权联系删除)
优化代码(一维dp)
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int v[105];
int dp[10005];
int main()
{
cin >> n >> m;
for(int i=1;i<=n;i++)
cin >> v[i];
dp[0]=1;
for(int i=1;i<=n;i++){
for(int j=m;j>=v[i];j--){
dp[j]=dp[j]+dp[j-v[i]];
}
}
cout << dp[m] << endl;
return 0;
}