栈
栈:是限定在表尾进行插入或删除操作的线性表
表尾:栈顶
表头:栈底
后进先出
(1)递归算法:汉诺塔
迷宫
皇后问题
背包问题:求得一组解和求得全部解
(2)计算阿克曼函数
(3)利用栈进行车辆调度求得出站车厢序列
(4)表达式求值
(5)离散事件模拟
1.1
(1)如果进站的车厢序列为123,则可能得到的出战车厢序列是?
(2)如果进站的车厢序列为123456,
则能否得到435612和135426的出战序列。
(1)321 123 132 213 231
(2)可以得到135426,不能得到435612因为4356出栈说明12已经在栈中,则1不可能在2之前出栈
设有编号为1,2,3,4的四辆列车,顺序进入一个栈式结构的车站,具体写出这四辆列车开出车站的所有可能的顺序。
1432
1234
1243
1324
1342
2134
2143
2341
231
2431
3214
3421
3241
4321
1.2
栈也是线性表,只是操作受限的线性表
1.3
void main()
{
sqstack s;
char x,y;
Initsatck(s);
x='c';
y='k';
push(s,x);
push(s,'a');
push(s,y);
pop(s,x);
push(s,'t');
push(s,x);
pop(s,x);
push(s,'s');
while(s.base!=s.top)
{ pop(s,y);
printf("%c",y);
}
printf("%c",x);
}
问输出的结果是什么:stack
1.4
问下列算法的功能
(1)
status algol(sqstack s)
{
int i,n,A[255];
n=0;
while(s.base!=s.top)
{
n++;
pop(s.A[n]);
}
for(int i=1;i<=n;i++)
push(s,A[i]);
}
(1)是把栈数据倒置
(2)
status algo2(sqstack s,int e)
{
sqstack t;
int d;
Initstack(s);
while(s.base!=s.top)
{
pop(s,d);
if(d!=e)
push(t,d);
}
while(t.base!=t.top)
{
pop(t,d);
push(s,d);
}
}
(2)是把S栈中的数值为e的删掉
利用栈T辅助将栈S中所有值为e的数据元素删除
1.5
假设以S和X分别表示入栈和出栈的操作,则出态和终态均为栈空的入栈和出栈的操作序列可以表示为仅为S和X组成的序列。称可以操作的序列为合法序列(列如“SXSX”为合法序列,SXXS为不合法序列)。试给出区分给定序列为合法序列或非法序列的一般准则,并证明:两个不同的合法序列(栈操作)序列(对同一输入序列)不可能得到相同的输出元素(指得是元素实体,而不是值)序列
判断给定序列T是否合法的充分必要条件是
[N1(T)+N2(T)=l]^[N1(T)=N2(T)]^(∀i)(1<=i<=l->N1(T)>=N2(T))
其中 N1(T) 为序列T中前i个字符构成的子序列中s的数目
其中 N2(T) 为序列T中前i个字符构成的子序列中x的数目
l为序列的长度
1.6
试将下列递推过程改成递归过程
void ditui(int n)
{
int i;
i=n;
while(i>1)
{
printf(i--);
}
}
改:
void digui(int j)
{
if(j>1)
printf(j);
digui(j-1);
}
1.7
试将下列递归过程改成非递归过程
void test(int &sum)
{
int x;
scanf(x);
if(x==0)
sum=0;
else
{
test(sum);
sum+=x;
}
printf(sum);
}
改:
void test(int &sum)
{
int x,sum=0;
scanf(x);
sqstack s;
Initstack(s);
while(x!=0)
{
push(s,x);
scanf(x);
}
printf(sum);
while(pop(s,x))
{
sum+=x;
printf(sum);
}
}
算法一:进制转化
//n p,将转化成p进制
#include<stdio.h>
#include<stdlib.h>
#define m 100
typedef struct stack
{
int *base;
int *top;
int stacksize;
}sqstack;
void init(sqstack &s)
{s.base=(int *)malloc(m*sizeof(int));
if(s.base==NULL)
exit(-2);
s.top=s.base;
s.stacksize=m;
}
void push(sqstack &s,int e)
{if(s.top-s.base>=s.stacksize)
{s.base=(int *)realloc(s.base,(m+s.stacksize)*sizeof(int));
if(s.base==NULL)
exit(-2);
s.top=s.base+s.stacksize;
s.stacksize+=m;
}
*s.top++=e;
}
int pop(sqstack &s)
{int e;
if(s.top==s.base)
return 0;
e=* --s.top;
return e;
}
void conversion(int n,int p,sqstack &s)
{
int r;
while(n)
{ r=n%p;
push(s,r);
n=n/p;
}
int e;
while(s.top!=s.base)
{ e=pop(s);
if(e<10)
printf("%d",e);
else if(e>=10)
printf("%c",e+55);
}
printf("\n");
}
int main()
{
int n,p;
sqstack s;
init(s);
scanf("%d%d",&n,&p);
conversion(n,p,s);
}
- 【李春葆】向量、栈和队列都是 线性 结构,可以在向量的 任何 位置插入和删除元素;对于栈只能在 栈顶 插入和删除元素;对于队列只能在 队尾 插入和 队首 删除元素。
- 栈是一种特殊的线性表,允许插入和删除运算的一端称为 栈顶 。不允许插入和删除运算的一端称为 栈底 。
3 队列 是被限定为只能在表的一端进行插入运算,在表的另一端进行删除运算的线性表。
( × )1. 线性表的每个结点只能是一个简单类型,而链表的每个结点可以是一个复杂类型。
错,线性表是逻辑结构概念,可以顺序存储或链式存储,与元素数据类型无关。
( × )2. 在表结构中最常用的是线性表,栈和队列不太常用。
错,不一定吧?调用子程序或函数常用,CPU中也用队列。
( √ )3. 栈是一种对所有插入、删除操作限于在表的一端进行的线性表,是一种后进先出型结构。
( √ )4. 对于不同的使用者,一个表结构既可以是栈,也可以是队列,也可以是线性表。
正确,都是线性逻辑结构,栈和队列其实是特殊的线性表,对运算的定义略有不同而已。
( × )5. 栈和链表是两种不同的数据结构。
错,栈是逻辑结构的概念,是特殊殊线性表,而链表是存储结构概念,二者不是同类项。
( × )6. 栈和队列是一种非线性数据结构。
错,他们都是线性逻辑结构,栈和队列其实是特殊的线性表,对运算的定义略有不同而已。
( √ )7. 栈和队列的存储方式既可是顺序方式,也可是链接方式。
( √ )8. 两个栈共享一片连续内存空间时,为提高内存利用率,减少溢出机会,应把两个栈的栈底分别设在这片内存空间的两端。
( × )9. 队是一种插入与删除操作分别在表的两端进行的线性表,是一种先进后出型结构。
错,后半句不对。
( × )10. 一个栈的输入序列是12345,则栈的输出序列不可能是12345。
错,有可能。
1、简述栈的逻辑结构、存储结构及其相关算法
2、简述队列的逻辑结构、存储结构及其相关算法。
3、设计算法判断一个算术表达式的圆括号是否正确配对。
对表达式进行扫描,凡遇到“(”就进栈,
遇“)”就退掉栈顶的“(”,表达式被扫描完毕,栈为空。表示圆括号匹配。否则圆括号不匹配。
4.
(1)输入序列为ABC,可以变为CBA时,经过的栈操作为( )
(1)答:压A->压B->压C->弹栈->弹栈->弹栈
(2)设计一个判别表达式中左,右括号是否配对出现的算法,采用( )数据结构最佳。
在上面的算法一
(3)假设以数组A[m]存放循环队列的元素,
其头尾指针分别为front和rear,则当前队列中的元素个数为( )
(rear-front+m)%m
(4)若用一个大小为6的数组来实现循环队列,
且当前rear和front的值分别为0和3,
当从队列中删除一个元素,
再加入两个元素后,rear和front的值分别为多少?( )
删除一个front变成1,此时rear不变
再加入两个 rear变成5,此时front不变
5、 设有两个栈S1,S2都采用顺序栈方式,并且共享一个存储区[O..maxsize-1],为了尽量利用空间,
减少溢出的可能,可采用栈顶相向,
迎面增长的存储方式。试设计S1,S2有关入栈和出栈的操作算法。
( B )1. 〖00年元月统考题〗栈中元素的进出原则是
A.先进先出 B.后进先出 C.栈空则进 D.栈满则出
( C )2. 〖李春葆〗若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为
A.i B.n=i C.n-i+1 D.不确定
解释:当p1=n,即n是最先出栈的,根据栈的原理,n必定是最后入栈的(事实上题目已经表明了),那么输入顺序必定是1,2,3,…,n,则出栈的序列是n,…,3,2,1。
(若不要求顺序出栈,则输出序列不确定)
( D )5.数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素的公式为
(A)r-f; (B)(n+f-r)% n; (C)n+r-f; (D)(n+r-f)% n
5【统考书P60 4-14】设循环队列的容量为40(序号从0到39),现经过一系列的入队和出队运算后,有
① front=11,rear=19; ② front=19,rear=11;问在这两种情况下,循环队列中各有元素多少个?
答:用队列长度计算公式: (N+r-f)% N
① L=(40+19-11)% 40=8 ② L=(40+11-19)% 40=32