1045 快速排序 (25分)
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的 N 个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定 N = 5 N = 5 N=5, 排列是1、3、2、4、5。则:
1 的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管 3 的左边元素都比它小,但其右边的 2 比它小,所以它不能是主元;
尽管 2 的右边元素都比它大,但其左边的 3 比它大,所以它不能是主元;
类似原因,4 和 5 都可能是主元。
因此,有 3 个元素可能是主元。
输入格式:
输入在第 1 行中给出一个正整数 N(≤105); 第 2 行是空格分隔的 N 个不同的正整数,每个数不超过 109。
输出格式:
在第 1 行中输出有可能是主元的元素个数;在第 2 行中按递增顺序输出这些元素,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路:主元需满足:1.排序后主元位置不变 2.主元是当前位置的最大值
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
int a[n],b[n];
int tamx[n]={0};
for(int i=0;i<n;i++)
{
cin>>a[i];b[i]=a[i];
if(i==0)
tamx[i]=a[0];
else
tamx[i]=max(tamx[i-1],a[i]);
}
sort(b,b+n);
vector<int>v;
for(int i=0;i<n;i++)
{
if(b[i]==a[i]&&a[i]==tamx[i])
v.push_back(a[i]);
}
cout<<v.size()<<endl;
if(v.size()==0)
printf("\n");
for(int i=0;i<v.size();i++)
{
if(i==0)
cout<<v[i];
else
cout<<" "<<v[i];
}
return 0;
}