电磁波(搬运工

Electromagnetic Wave


Wednesday, October 27, 2021 2:20 PM

zhipzhang@mail.ustc.edu.cn

本文来自于知乎回答

Maxwell equation

∇ ⋅ D ⃗ = ρ ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × H ⃗ = j ⃗ + ∂ D ⃗ ∂ t \begin{aligned} &\nabla \cdot \vec{D}=\rho \\ &\nabla \cdot \vec{B}=0 \\ &\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ &\nabla \times \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t} \end{aligned} D =ρB =0×E =tB ×H =j +tD

麦氏方程的解:考虑最简单最基本的情况,即真空情况且不存在自由电荷以及传导电流:
∇ ⋅ E = 0 ∇ ⋅ B ⃗ = 0 ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × B ⃗ = ε μ ∂ E ⃗ ∂ t \begin{aligned} &\nabla \cdot E=0 \\ &\nabla \cdot \vec{B}=0 \\ &\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ &\nabla \times \vec{B}=\varepsilon \mu \frac{\partial \vec{E}}{\partial t} \end{aligned} E=0B =0×E =tB ×B =εμtE
( ∇ × ( ∇ × E ) ) i = ϵ i j k ∇ j ( ∇ × E ) k = ϵ i j k ϵ k l m ∇ j ∇ l E m (\nabla \times(\nabla \times E))_{i} = \epsilon_{ijk}\nabla_{j}(\nabla \times E)_{k}=\epsilon_{ijk}\epsilon_{klm}\nabla_{j}\nabla_{l}E_{m} (×(×E))i=ϵijkj(×E)k=ϵijkϵklmjlEm

ϵ \epsilon ϵ展开后就可以得到上式等于 ∇ i ( ∇ ⋅ E ) − ∇ 2 E i \nabla_{i}(\nabla\cdot E) - \nabla^{2}E_{i} i(E)2Ei

第一项为0,将(2)式中后两项求其旋度就可以得到:
∇ 2 E ⃗ − 1 v 2 ∂ 2 ⋅ E ∂ t 2 = 0 ∇ 2 B ⃗ − 1 v 2 ∂ 2 B ⃗ ∂ t 2 = 0 \begin{aligned} &\nabla^{2} \vec{E}-\frac{1}{v^{2}} \frac{\partial^{2} \cdot E}{\partial t^{2}}=0 \\ &\nabla^{2} \vec{B}-\frac{1}{v^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \end{aligned} 2E v21t22E=02B v21t22B =0
其中 v = 1 ε μ v=\frac{1}{\sqrt{\varepsilon \mu}} v=εμ 1,(3)式即为真空下电磁场的方程。

Discuss About The Equation

A. Plane Waves 平面波的情况

平面波:波阵面,即等相位面是一个平面。

假设平面波沿着z轴传播,因此波动方程可以进一步简化为:
∂ 2 E ⃗ ∂ z 2 − 1 v 2 ∂ 2 E ⃗ ∂ t 2 = 0 ∂ 2 B ⃗ ∂ z 2 − 1 v 2 ∂ 2 B ⃗ ∂ t 2 = 0 \begin{aligned} &\frac{\partial^{2} \vec{E}}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \\ &\frac{\partial^{2} \vec{B}}{\partial z^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \end{aligned} z22E v21t22E =0z22B v21t22B =0
该波动方程的解为 E ⃗ = f ( z v − t ) \vec{E} = f(\frac{z}{v}-t) E =f(vzt)

可以写出对应的简谐振动的特解:
E ⃗ = A ⃗ cos ⁡ [ ω ( z v − t ) ] B ⃗ = A ⃗ ′ cos ⁡ [ ω ( z v − t ) ] \begin{aligned} &\vec{E}=\vec{A} \cos \left[\omega\left(\frac{z}{v}-t\right)\right] \\ &\vec{B}=\vec{A}^{\prime} \cos \left[\omega\left(\frac{z}{v}-t\right)\right] \end{aligned} E =A cos[ω(vzt)]B =A cos[ω(vzt)]
其中引入周期T : ω = 2 π T \omega = \frac{2\pi}{T} ω=T2π代入后即有:
E ⃗ = A ⃗ cos ⁡ [ 2 π ( z λ − t T ) ] \vec{E}=\vec{A} \cos \left[2 \pi\left(\frac{z}{\lambda}-\frac{t}{T}\right)\right] E =A cos[2π(λzTt)]
接着再引入波矢 k ⃗ = k k 0 ⃗ \vec{k}= k \vec{k_{0}} k =kk0 ,其中 k = 2 π λ k = \frac{2\pi}{\lambda} k=λ2π,则有 E ⃗ = A ⃗ cos ⁡ ( k z − ω t ) \vec{E}=\vec{A} \cos (k z-\omega t) E =A cos(kzωt)

推广到任意方向上传播 E ⃗ = A ⃗ cos ⁡ ( k ⃗ ⋅ r ⃗ − ω t ) \vec{E}=\vec{A} \cos (\vec{k} \cdot \vec{r}-\omega t) E =A cos(k r ωt)

进一步,为了简化计算,可以引入光波的复数形式的表达: E ⃗ = A ⃗ e i ( k ⃗ ⋅ r ⃗ − ω t ) \vec{E}=\vec{A} e^{i(\vec{k} \cdot \vec{r}-\omega t)} E =A ei(k r ωt)在考虑的时候我们应该仅仅考虑其中的实数部分,可以以欧拉公式展开后得到。

上面的讨论在同一式内既考虑空间又考虑时间,更常见的情况是选定某一个时间不变,观察光波在空间上的分布。我们称 E ⃗ = A ⃗ e i k ⃗ ⋅ r ⃗ \vec{E} = \vec{A}e^{i\vec{k} \cdot \vec{r}} E =A eik r 为复振幅。

B.Spherical Waves (后续补充过程)

球面波对应的KaTeX parse error: Undefined control sequence: \grad at position 1: \̲g̲r̲a̲d̲^{2}算符的展开方式不同,得到的方程应该有所不同。

球面波的波阵面是球面,可以将球面波表示为下面的形式:
E = A 1 r e i ( k π − ω t ) E=\frac{A_{1}}{r} e^{i(k \pi-\omega t)} E=rA1ei(kπωt)

Property Of Electromagnetic Waves

前面提到过:真空下 ρ = 0 \rho = 0 ρ=0即,对应电场的散度为零。

下面的方程仅考虑平面波利用麦氏方程前两项散度式
∇ ⋅ E ⃗ = A ⃗ ⋅ ∇ ⋅ e i ( k ⃗ ⋅ r ⃗ − ω t ) = i k ⃗ ⋅ E ⃗ = 0 \nabla \cdot \vec{E}=\vec{A} \cdot \nabla \cdot e^{i(\vec{k} \cdot \vec{r}-\omega t)}=i \vec{k} \cdot \vec{E}=0 E =A ei(k r ωt)=ik E =0
k ⃗ \vec{k} k 的传播方向就是波前进的方向,由上式并推广后就可以得到波传播方向与电场和磁场都垂直。


Wednesday, October 27, 2021 3:30 PM

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值