Simple Transformers实现文本多分类

 1.SimpleTransformers

基于transformers库开发的,快速实现模型调用、训练和预测的工具

1.1 支持的任务

  • 文本分类
    • 多分类
    • 句子对应多标签
  • 实体识别Token Classification (NER)
  • 阅读理解Question Answering

1.2 安装

conda or pip(官方推荐conda)

依赖:pandas、torch 

pip install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

pip install simpletransformers

 1.3 参数

创建模型的过程中需要传入参数类,参数分为comment和spicial,列举重要的参数及含义

参数含义
output_dir输出结果位置
tensorboard_dirtensorboard输出地址
best_model_dir当evaluate_during_training为true,保存最好模型的位置
evaluate_during_trainingtrain与evaluation同时进行
cache_dir缓存文件位置
save_model_every_epoch每一次迭代储存一次model checkpoint

2.多分类任务

项目快速实现对文本的多分类与API接口

数据准备

  • DataFrame,text and lables
  • lables必须从0开始,映射为整数数字
  • KFold划分样本集

模型训练

模型调用

3.遇到的问题

ImportError: dlopen: cannot load any more object with static TLS

解决:调整torch、sklearn、simpletransformers的导入顺序

4.参考

multi-class-classification文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值