BERT实战:实现多分类

本文通过实战演示如何利用BERT进行文本多分类任务,具体案例是Kaggle上的真假新闻分类。首先加载数据,然后构建Dataset和DataLoader,接着在预训练的BERT模型基础上添加Linear分类器构建模型,最后进行训练和模型预测。
摘要由CSDN通过智能技术生成

前面以及介绍过bert的理论知识,以及它相应的实现方法,那么让我们通过实战加深对bert的了解。

我们将通过bert实现一个文本多分类任务,具体是kaggle上的一个真假新闻的任务。具体如下:

加载数据

通过pandas将数据从csv中取出来

import pandas as pd
df_train = pd.read_csv("train.csv")
df_train = df_train.reset_index()
df_train = df_train.loc[:, ['title1_zh', 'title2_zh', 'label']]
df_train.columns = ['text_a', 'text_b', 'label']

df_test = pd.read_csv("test.csv")
df_test = df_test.loc[:, ["title1_zh", "title2_zh", "id"]]
df_test.columns = ["text_a", "text_b", "Id"]

print("训练样本数量:", len(df_train))
print("预测样本数:", len(df_test))
df_train.head()
df_test.head()

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值