HMM的学习

本文介绍了隐马尔科夫模型(HMM)的基本概念,包括其两个核心假设,并详细阐述了HMM的三个核心问题——概率计算、学习和预测。针对概率计算问题,提到了前向算法及其缺点;学习问题中提到了Baum-Welch算法(EM算法);预测问题则围绕维特比算法展开。通过示例帮助读者深入理解这些算法。
摘要由CSDN通过智能技术生成

隐马尔科夫模型的基本概念

定义10.1(隐马尔可夫模型) ==隐马尔可夫模型==是关于时序的概率模型, 描述由一个
隐藏的马尔可夫链随机生成不可观测的状态随机序列, 再由各个状态生成一个观测而产生
观测随机序列的过程。 隐藏的马尔可夫链随机生成的状态的序列, 称为状态序列(state
sequence) ; 每个状态生成一个观测, 而由此产生的观测的随机序列, 称为观测序列
(observation sequence) 。 序列的每一个位置又可以看作是一个时刻。

隐马尔可夫模型由初始概率分布、 状态转移概率分布以及观测概率分布确定。 隐马尔
可夫模型的形式定义如下:
首先:马尔科夫要求状态和观测的集合是有限的。

在这里插入图片描述在这里插入图片描述
其中隐马尔科夫模型有两个假设:
1、齐次马尔科夫行假设,即假设隐藏的马尔科夫链在任意时刻t的状态只依赖于其前一时刻的状态,于其它时刻的状态及观测无关,也与时刻t无关。
在这里插入图片描述
2、观测独立性假设,当前时刻的观测只依赖当前时刻的状态。

HMM的三个问题

概率计算问题

给定模型λ和观测序列O,计算在模型λ的基础下观测序列O出现的概率。
需要的算法是前向算法与后向算法。

前向算法

在这里插入图片描述
首先直接计算算法,即求出所有的符合观测序列O的状态序列I=(i1,i2,i3…it),求和计算该观测序列在给出模型下的概率。
在这里插入图片描述
缺点:计算量太大,存在重复计算问题。
接下来是前向算法:
在这里插入图片描述
在这里插入图片描述
总结:递归计算,依次按照观测序列O中的观测值计算。
看一个例题就明白了:
在这里插入图片描述
后向算法就是反着去推,前向算法从观测序列O的第一个往后去递归,后向算法相反。

学习问题

已知观测序列O,学习模型λ的参数,使得在该模型下观测序列概率最大。
需要的算法是Baum-Welch算法(EM算法)。

预测问题

已知模型λ和观测序列O,求最有可能对应的状态序列I。
主要学习维特比算法(Viterbi algorithm)。

维特比算法

维特比算法实际是用动态规划解隐马尔可夫模型预测问题, 即用动态规划(dynamic
programming)求概率最大路径(最优路径),这时一条路径对应着一个状态序列。

在这里插入图片描述

例子:

在这里插入图片描述
在这里插入图片描述
代码:

import numpy as np
class HiddenMarkov:
    def forward(self, Q, V, A, B, O, PI):  # 使用前向算法
        N = len(Q)  # 状态序列的大小
        M = len(O)  # 观测序列的大小
        alphas = np.zeros((N, M))  # alpha值
        T = M  # 有几个时刻,有几个观测序列,就有几个时刻
        for t in range(T):  # 遍历每一时刻,算出alpha值
            indexOfO = V.index(O[t])  # 找出序列对应的索引
            for i in range(N):
                if t == 0:  # 计算初值
                    alphas[i][t] = PI[t][i] * B[i][indexOfO]  # P176(10.15)
                    print('alpha1(%d)=p%db%db(o1)=%f' % (i, i, i, alphas[i][t]))
                else:
                    alphas[i][t] = np.dot([alpha[t - 1] for alpha in alphas], [a[i] for a 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值