常用排序算法-C++实现


前言

C++实现


1.时间复杂度O(n^2)的排序算法:冒泡排序、选择排序、插入排序
2.介于时间复杂度O(n^2)到O(nlogn)的排序算法:希尔排序
3.时间复杂度O(nlogn)的排序算法:快速排序、归并排序、堆排序
----------------------突破了O(nlogn)------------------
4.时间复杂度O(n)的排序算法:计数排序、基数排序 (都是桶排序的特殊方法)

不稳定的:选择排序、希尔排序、快速排序、堆排序


排序算法

时间复杂度顺序:平均、最坏、最好

1.冒泡排序(Bubble Sort) O ( n 2 ) O(n^{2}) O(n2) O ( n 2 ) O(n^{2}) O(n2) O ( n ) O(n) O(n)

void bubble_sort(std::vector<int>& nums) {
    int n = nums.size();
    for (int i = 0; i < n - 1; i++) {  //n - 1
        for (int j = 0; j < n - 1 - i; j++) {
            if (nums[j] > nums[j + 1]) {
                int tmp = nums[j + 1];
                nums[j + 1] = nums[j];
                nums[j] = tmp;
            }
        }
    }
}

2. 选择排序(Selection Sort) O ( n 2 ) O(n^{2}) O(n2) O ( n 2 ) O(n^{2}) O(n2) O ( n 2 ) O(n^{2}) O(n2)

void selection_sort(vector<int>& nums) {
    int minv, tmp;
    for (int i = 0; i < nums.size() - 1; i++) {
        minv = i; //初始化为无序区开始标志
        for (int j = i + 1; j < nums.size(); j++) {  //在后面寻找最小的数
            if (nums[j] < nums[minv]) minv = j;  //最小数的索引
        }
        tmp = nums[i];
        nums[i] = nums[minv];
        nums[minv] = tmp; //交换找到的最小数到无序区第一个数
    }
}

3. 插入排序(Insertion Sort) O ( n 2 ) O(n^{2}) O(n2) O ( n 2 ) O(n^{2}) O(n2) O ( n ) O(n) O(n)

void insertion_sort(vector<int>& nums) {
    int pre, cur;
    for (int i = 1; i < nums.size(); i++) {
        pre = i - 1;
        cur = nums[i]; //当前值
        while (pre >= 0 && nums[pre] > cur) { //从pre开始往前找,如果比当前值小或等,且此时没有越界(至少是第一个元素),则找到其插入位置
            nums[pre + 1] = nums[pre]; //大的元素都往后移动一位
            pre--;
        }
        nums[pre + 1] = cur;//此时nums[pre]小于等于cur, 而后面元素都大于cur,插入pre后面
    }
}

4. 希尔排序(Shell Sort) O ( n 1.3 ) O(n^{1.3}) O(n1.3) O ( n 2 ) O(n^{2}) O(n2) O ( n ) O(n) O(n)

void shell_sort(vector<int>& nums) {
    for (int gap = floor(nums.size() / 2); gap > 0; gap = floor(gap / 2)) {
        //多个分组交替执行
        for (int i = gap; i < nums.size(); i++) {
            int j = i, cur = nums[i];
            while (j - gap >= 0 && nums[j - gap] > cur){
                nums[j] = nums[j - gap];
                j = j - gap;
            }
            nums[j] = cur;
        }
    }
}

5. 快速排序(Quick Sort) O ( n l o g n ) O(nlogn) O(nlogn) O ( n 2 ) O(n^{2}) O(n2) O ( n l o g n ) O(nlogn) O(nlogn)

void quick_sort(vector<int>& nums, int l, int r){
    int n = nums.size();
    if (l < r) {
        int index = part(nums, l, r);   //一趟排序,并返回交换后基数下标
        quick_sort(nums, l, index - 1); //递归排序左边数组
        quick_sort(nums, index + 1, r); //递归排序右边数组
    }
}

int part(vector<int>& nums, int l, int r) {
    int p = nums[l]; //数组第一个元素作为基准
    int i = l, j = r;
    while (i < j) {
        while (nums[j] >= p && i < j) j--; //从右往左找第一个小于基准的数
        while (nums[i] <= p && i < j) i++; //从左往右找第一个大于基准的数
        swap(nums[i], nums[j]); //交换两个数
    }
    swap(nums[i], nums[l]); //把找到的小于基准的数与基数交换,这样小数就换到基准前面
    return i;
}

6. 归并排序(Merge Sort) O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)

void _merge(vector<int>& nums, int l, int mid, int r) {
    int n= r - l + 1;
    vector<int> res;
    int i = l, j = mid + 1;
    while (i <= mid && j <= r) {
        if (nums[i] <= nums[j]) res.push_back(nums[i]), i++;
        else res.push_back(nums[j]), j++;
    }
    while (i <= mid) res.push_back(nums[i]), i++;
    while (j <= r) res.push_back(nums[j]), j++;

    for (int i = 0; i < n; i++) nums[l + i] = res[i]; //*** nums = res XXXX
}

void merge_sort(vector<int>& nums, int l, int r) {
    if (l == r) return;
    int mid = (l + r) >> 1;
    merge_sort(nums, l, mid); //[l, mid]
    merge_sort(nums, mid + 1, r);  //[mid + 1, r]
    _merge(nums, l, mid, r);
}

7. 堆排序(Heap Sort) O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn)

int len;
void heapify(vector<int>& nums, int i) {
    int left = 2 * i + 1, right = 2 * i + 2, largest = i;

    if (left < len && nums[left] > nums[largest]) largest = left;
    if (right < len && nums[right] > nums[largest]) largest = right;
    if (largest != i) {
        swap(nums[i], nums[largest]);
        heapify(nums, largest);
    }
}

void buildMaxHeap(vector<int>& nums) {
    len = nums.size();
    for (int i = floor(len / 2); i >= 0; i--) heapify(nums, i);
}

void heap_sort(vector<int>& nums) {
    buildMaxHeap(nums);

    for (int i = nums.size() - 1; i > 0; i--) {
        swap(nums[0], nums[i]);
        len--;
        heapify(nums, 0);
    }
}

8.计数排序(Counting Sort) O ( n + k ) O(n + k) O(n+k) O ( n + k ) O(n + k) O(n+k) O ( n + k ) O(n + k) O(n+k)

void counting_sort(vector<int>& nums, int maxv) {
    vector<int> cnt(maxv + 1); //计数0-maxv
    int sortedIndex = 0;
    for (int i = 0; i < nums.size(); i++) {
        if (!cnt[nums[i]]) cnt[nums[i]] = 0;
        cnt[nums[i]]++; //计数
    }

    for (int i = 0; i <= maxv; i++) {
        while (cnt[i] > 0) {
            nums[sortedIndex++] = i;
            cnt[i]--;
        }
    }
}

9.桶排序(Bucket Sort) O ( n + k ) O(n + k) O(n+k) O ( n 2 ) O(n^{2}) O(n2) O ( n ) O(n) O(n)

void bucket_sort(vector<int>& nums, int bucketSize) {
    if (nums.empty()) return;

    int i;
    int minValue = nums[0], maxValue = nums[0];
    for (i = 1; i < nums.size(); i++) {
        if (nums[i] < minValue) minValue = nums[i];
        else if (nums[i] > maxValue) maxValue = nums[i];
    }

    //桶的初始化
    int bucketCount = floor((maxValue - minValue) / bucketSize) + 1;
    vector<vector<int>> buckets(bucketCount, vector<int>(0));

    //利用映射函数将数据分配到各个桶中
    for (int i = 0; i < nums.size(); i++) buckets[floor((nums[i] -  minValue) / bucketSize)].push_back(nums[i]);

    nums.resize(0);
    for (int i = 0; i < buckets.size(); i++) {
        Sort sort_b(buckets[i]); //对每个桶进行排序,这里使用插入排序
        sort_b.insertion_sort(buckets[i]);
        for (int j = 0; j < buckets[i].size(); j++) nums.push_back(buckets[i][j]);
    }
}

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值