ENVI5.3处理高分五号影像数据


一、数据打开

通过菜单栏File -> Open As-> China Satellites -> GF-5,在弹出的对话框,选择GF5_AHSI_E116.74_N35.26_20190529_005613_L10000046102.xml文件打开数据。


二、辐射定标

1)在Toolbox中,选择Radiometric Correction -> Radiometric Calibration,在弹出的File Selection对话框中,选择GF5_AHSI_E116.74_N35.26_20190529_005613_L10000046102.meta,点击OK;
在这里插入图片描述

在这里插入图片描述

2)在Radiometric Calibration参数设置面板中,直接点击Apply FLAASH Settings按钮,其余参数会自动调整为FLAASH大气校正所要求的数据输入格式;

3)设置辐射定标结果输出路径和文件名;

4)点击OK开始执行
在这里插入图片描述
5)右下角显示进度,定标结束后结果会自动加载到Data Manager中。
在这里插入图片描述
6)结果
在这里插入图片描述

二、大气校正

1)在Toolbox中,打开/Radiometric Correction/Atmospheric Correction Module/FLAASH Atmospheric Correction工具,弹出FLAASH Atmospheric Correction Model Input Parameters参数设置面板。
在这里插入图片描述
2)在基本参数设置面板中,上面部分主要用于设置数据输入输出,中间部分主要用于设置影像和传感器相关参数,最下部为大气模型及气溶胶反演相关参数设置。

上面部分:

Input Radiance Image:选择上一步辐射定标后的结果;

在这里插入图片描述

Radiance Scale Factors:选择Use single scale factor for all bands,数值保持默认1

在这里插入图片描述

Output Reflectance File:设置经大气校正后的地表反射率数据输出路径及文件名;

Output Directory for FLAASH Files:校正过程中生成其他文件的存储路径;

Rootname for FLAASH Files:输出文件名前缀,可不填。

至此,上面部分参数已经设置完毕

中间部分主要用于设置影像和传感器相关参数:

Scene Center Location:影像中心经纬度;

Sensor Type:传感器类型,保持默认UNKNOWN-HSI;

Sensor Altitude(km):传感器高度,705km(ENVI默认不会自带填入,手动输入即可);

Ground Elevation(km):影像对应区域地面平均高程。此处输入0.194,注意单位是km;

Pixel Size(m):像元大小,30m;

Flight Date:数据获取时间,可以通过文件名或查看元数据信息获取;
在这里插入图片描述

中间部分已经设置完毕。

在这里插入图片描述

最下部为大气模型及气溶胶反演相关参数设置:

Atmospheric Model:大气模型,一般根据影像中心纬度和获取月份确定,需借助帮助文档完成。这里选择Mid-Latitude Summer;
在这里插入图片描述

Water Retrieval:是否进行水汽反演,选择Yes,此时下方Water Absorption Feature选项激活,有1135/940/820nm三个选项可选,推荐选择1135nm。此处保持默认;

Aerosol Model:气溶胶模型,有Rural、Urban、Maritime和Tropospheric四个选项可选。观察影像可以发现影像位于郊区,此处选择Rural;

Aerosol Retrieval:气溶胶反演方法,使用暗像元反射比模型估算影像气溶胶含量和平均能见度,有None、2-Band(K-T)和2-Band Over Water三个选项可选。此处选择2-Band(K-T);

Initial Visibility(km):初始能见度。根据影像获取时大气情况设置,如果气溶胶无法反演时,该值将作为初始值参与大气校正,此处保持默认即可;

Spectral Polishing:光谱平滑。保持默认Yes;

Width (number of bands):光谱平滑窗口大小。数值越大,输出反射率数据光谱越平滑,奇数值较偶数值计算效率略高。此处保持默认。

Wavelength Recalibration:输入波长校准。AVIRIS、HYDICE、HyMap、HYPERION、 CASI和AISA传感器ENVI会自动校准,其他高光谱传感器需要提供额外的光谱仪定义文件。此处保持默认No。
在这里插入图片描述
3)高光谱参数设置面板,用来设置水汽和气溶胶反演通道:

在基本参数设置面板底部,点击Hyperspectral Settings…,打开高光谱参数设置面板;

在这里插入图片描述
Select Channel Definitions by:通道参数来源。这里我们保持默认设置Automatic Selection即可,FLAASH自动选择通道定义,通道定义由FLAASH根据数据的光谱特征自动分配。
在这里插入图片描述
4)高级参数设置面板:

在基本参数设置面板中,点击右下角Advanced settings…,打开高级参数设置面板;

在这里插入图片描述
左方参数框中的参数一般保持默认即可,对于右侧参数框中的参数:

Use Tiled Processing:是否采用分块处理。默认为Yes,推荐进行分块,分块大小(Tile Size)可根据计算机内存情况确定,可设置为安装内存的75%,默认为100M或者大于Classic中设置的缓存大小(Cache Size)。对于包含许多0值的影像,分块大小不易设置太小,避免出现分块像元值全为0而报错。此处选择No,不进行分块(计算机物理内存16G);

其他参数保持默认即可,参数设置完毕后点击OK。
在这里插入图片描述
5)在基本参数设置面板中,点击左下角Apply按钮,弹出FLAASH Atmospheric Correction面板,显示处理进度。处理结束后,会弹出一个简单的统计面板,说明大气校正结束
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

至此,大气校正结束。校正后的地表反射率数据存放在设置的Output Reflectance File路径下,其他结果文件存放在设置的Output Directory for FLAASH Files路径下。

四、正射校正

1)点击Toolbox→Geometric Correction→Orthorectification→RPC Orthorectification Workflow,打开正射校正流程化工具;
在这里插入图片描述

2)在File Selection面板中,Input File选择经过大气校正的多光谱数据(GF5_E11674N3526_reflect.dat),DEM File会默认选择全球分辨率为900米的DEM数据,我们这里保持默认(如果有更高分辨率的DEM数据,可以替换此数据),点击Next;
在这里插入图片描述
在这里插入图片描述

3)在RPC Refinement面板中,有四个选项卡可以选择。
①切换到Advanced选项卡,修改输出像元大小Output Pixel Size为30米,重采样方法Image Resampling选择三次卷积法,其他参数保持默认;
在这里插入图片描述

② 切换到Export选项卡,选择输出文件格式,设置输出路径及文件名(GF5_E11674N3526_rpcortho.dat),点击Finish;
在这里插入图片描述
在这里插入图片描述

### 高分三号卫星数据处理方法 高分三号(GF-3)卫星是一种合成孔径雷达(SAR)遥感卫星,其数据处理涉及多个步骤和工具。以下是关于高分三号数据处理的具体说明: #### 使用的工具 高分三号的数据处理通常依赖于专业的遥感图像处理软件 ENVI5.3 和 PolSARpro5.0 的组合[^2]。这些工具提供了必要的功能来完成从原始数据到可用影像的转换。 #### 数据处理流程 1. **辐射校正** 辐射校正是为了消除传感器响应特性的影响并获得物理量级的反射率或后向散射系数。此过程可以通过 ENVI 中的相关模块实现。 2. **几何校正** 几何校正用于纠正由于地球曲率、地形起伏以及传感器姿态变化引起的几何畸变。这一步骤对于确保最终产品具有精确的空间定位至关重要。利用 ENVI 提供的功能可以执行这一操作,并通过导入外部 DEM 数据进一步提高精度。 3. **去噪处理** SAR 图像常受到斑点噪声影响,因此需要采用滤波技术减少这种干扰而不损失过多细节信息。PolSARpro 软件包内含多种先进的滤波算法可供选择应用于此阶段。 4. **极化分解** 对于多极化的 GF-3 数据来说,进行适当的极化分析是非常重要的环节之一。PolSARpro 是专门针对极化 SAR 数据设计的强大平台,在这里可以选择不同的模型来进行极化特征提取与分类等工作。 5. **地理编码** 地理编码即将经过上述各步处理后的图像投影至特定地图坐标系上以便后续使用。同样地,在 ENVI 环境下配合 PolSARpro 可顺利完成该任务。 ```python import envi from polsarpro import PolarizationAnalysis # 加载数据文件 data = envi.load('gf3_data.hdr') # 执行辐射校正 radiometric_calibrated = data.radiometric_calibration() # 应用几何校正 geometric_corrected = radiometric_calibrated.geometric_correction(dem='external_dem.tif') # 去噪处理 filtered_image = geometric_corrected.apply_filter(filter_type='lee_sigma', window_size=7) # 极化分解 polar_analysis = PolarizationAnalysis(filtered_image) decomposed_results = polar_analysis.decompose(method='freeman_douglas') # 地理编码 final_product = decomposed_results.geocode(output_projection='WGS84') ```
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值