机器学习fit时出现---ValueError: Input contains NaN, infinity or a value too large for dtype('float32').

本文介绍如何在数据集中排查和处理NaN与Inf值,包括使用Python代码检查空值和无穷值的数量,并提供解决方案将无穷值转换为NaN,便于后续的数据清洗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出现ValueError: Input contains NaN, infinity or a value too large for dtype(‘float32’).
就如错误一样,数据集里有inf数值

# 空值排查
nan_list = trains.isnull().sum().tolist()#把每一列的空值个数加起来
print(nan_list)
print(sum(nan_list))

# 无穷值排查
inf_list = np.isinf(trains).sum().tolist()#把每一列的无穷值个数加起来
print(inf_list)
print(sum(inf_list))

用上面几行代码查看数据中是否有空值和inf 值

# 去除数据集中的inf
trains[np.isinf(trains)] = np.nan

参考:https://blog.csdn.net/xu136090331/article/details/95097183

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值