前言
早上老师讲了一些重点,这里记录一下(不完全一样,加了一些自己的理解,仅供参考),顺带记下写这篇博客前看到的两个链接, 还不错,喜欢c++的朋友可以看看:
另外, 关于大物的文章传送门:
教材: 马文蔚改编 物理学(第五版)上册 高等教育出版社
转载请注明原文: 大物上重点
https://blog.csdn.net/weixin_43850253/article/details/112217470
一,质点运动学
1. 基本概念
位
矢
r
⃗
位矢~~\vec{r}
位矢 r
v
⃗
=
d
r
⃗
d
t
⃗
\vec{v} = \frac{d\vec{r}}{d\vec{t}}
v=dtdr
a
⃗
=
d
v
⃗
d
t
=
d
2
r
⃗
d
t
2
\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}
a=dtdv=dt2d2r
r
⃗
(
x
,
y
,
z
)
随
t
变
化
⇒
运
动
方
程
\vec{r}(x, y, z)随t变化 \Rightarrow 运动方程
r(x,y,z)随t变化⇒运动方程
2.圆周运动
v
⃗
=
v
e
t
⃗
\vec{v} = v\vec{e_t}
v=vet
其中,
e
t
⃗
\vec{e_t}
et表示切线方向的单位元。
ω
=
d
θ
d
t
\omega = \frac{d\theta}{dt}
ω=dtdθ
α
=
d
ω
d
t
=
d
2
θ
d
t
2
\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}
α=dtdω=dt2d2θ
v
=
r
ω
v = r\omega
v=rω
a
t
⃗
=
d
v
d
t
e
t
⃗
=
r
α
⃗
e
t
\vec{a_t} = \frac{dv}{dt}\vec{e_t} = r\alpha \vec{}e_t
at=dtdvet=rαet
a
n
⃗
=
v
2
r
e
n
⃗
=
r
ω
e
t
⃗
\vec{a_n} = \frac{v^2}{r} \vec{e_n} = r\omega\vec{e_t}
an=rv2en=rωet
3. 相对运动
△
r
⃗
=
△
r
⃗
′
+
△
D
⃗
\triangle \vec{r} = \triangle\vec{r}' + \triangle\vec{D}
△r=△r′+△D
绝对位移 = 相对位移 + 牵连位移
v
⃗
=
v
⃗
′
+
u
⃗
\vec{v} = \vec{v}' + \vec{u}
v=v′+u
a
⃗
=
a
⃗
′
+
a
n
⃗
\vec{a} = \vec{a}' + \vec{a_n}
a=a′+an
注意一下阿特伍德机(Atwood, P 38)
二,牛顿定律
1.动量
p
⃗
=
m
v
⃗
\vec{p} = m \vec{v}
p=mv
位移+ 动量
⇒
\Rightarrow
⇒ 运动状态
2.动量与力
F
⃗
=
d
p
⃗
d
t
\vec{F} = \frac{d\vec{p}}{dt}
F=dtdp
适用于高速,变质量问题
F
⃗
=
m
a
⃗
\vec{F} = m\vec{a}
F=ma
这个只能是m固定才行
F
t
⃗
=
m
a
t
⃗
=
m
d
v
d
t
e
t
⃗
\vec{F_t} = m\vec{a_t} = m\frac{dv}{dt}\vec{e_t}
Ft=mat=mdtdvet
其中,
F
t
⃗
\vec{F_t}
Ft为切向力.
F
n
⃗
=
m
a
n
⃗
=
m
v
2
ρ
e
n
⃗
\vec{F_n} = m\vec{a_n} = m\frac{v^2}{\rho}\vec{e_n}
Fn=man=mρv2en
其中
F
n
⃗
\vec{F_n}
Fn 为向心力(法向力)
3. 几种常见力
(1)万有引力
F
⃗
=
−
G
m
1
m
2
r
2
e
r
⃗
\vec{F} = -G\frac{m_1m_2}{r^2}\vec{e_r}
F=−Gr2m1m2er
(2)重力:
P
⃗
=
m
g
⃗
\vec{P} = m\vec{g}
P=mg
其中,
g
=
G
m
E
R
2
g=\frac{Gm_E}{R^2}
g=R2GmE
(3)弹性力:
F
=
−
k
x
F = -kx
F=−kx
(4)最大静摩擦力:
F
f
o
M
=
u
0
F
N
F_{foM} = u_0F_N
FfoM=u0FN
(5)动摩擦力
F
f
=
u
F
N
F_f = uF_N
Ff=uFN
4.两个注意的问题
(1)阿特伍德机(P38)
非惯性系列牛顿第二定理
(2)变力
F随着v变, 如空气阻力
弄出来是一个常微分方程,这个时候使用分离变量法
大于两个变量则转为两个变量
三,动量和能量
1. 动量
I
⃗
=
∫
t
1
t
2
F
(
t
)
⃗
d
t
\vec{I} = \int_{t1}^{t2}\vec{F(t)}dt
I=∫t1t2F(t)dt
质点的动量定理
I
⃗
=
m
v
2
⃗
−
m
v
1
⃗
\vec{I} = m\vec{v_2} ~-~ m\vec{v_1}
I=mv2 − mv1
质点系的动量定理
∫
t
1
t
2
F
⃗
e
x
d
t
=
∑
i
=
0
n
m
i
v
i
−
∑
i
=
0
n
m
i
v
i
0
\int_{t1}^{t2}\vec{F}^{ex}dt = \sum_{i=0}^{n}m_iv_i - \sum_{i=0}^{n}m_iv_{i0}
∫t1t2Fexdt=i=0∑nmivi−i=0∑nmivi0
其中,
F
⃗
e
x
\vec{F}^{ex}
Fex表示合外力
当
F
⃗
e
x
\vec{F}^{ex}
Fex = 0
⇒
P
⃗
=
C
⃗
\Rightarrow \vec{P} = \vec{C}
⇒P=C,即合外力为0时,总动量不变。
2. 动能
W
=
∫
A
B
F
⃗
⋅
d
r
⃗
W = \int_{A}^{B}\vec{F}\cdot d\vec{r}
W=∫ABF⋅dr
其中,
d
r
⃗
d\vec{r}
dr 表示为位移元。
E
k
=
1
2
m
v
2
=
P
2
2
m
E_k = \frac{1}{2}mv^2=\frac{P^2}{2m}
Ek=21mv2=2mP2
其中,
E
k
E_k
Ek 表示动能
质点的动能定理:
W
=
E
k
2
−
E
k
1
W = E_{k2} - E_{k1}
W=Ek2−Ek1
3.保守力
W
=
∮
F
⃗
⋅
d
r
⃗
=
0
W = \oint{\vec{F}\cdot d\vec{r}} = 0
W=∮F⋅dr=0
或
F
⃗
\vec{F}
F 做的功和路径无关.
这两个可以一个为定义,一个为性质,它们是可以互相推导的。
三个常见的保守力
(1) 万有引力:
E
p
=
−
G
m
′
m
r
E_p = -G\frac{m'm}{r}
Ep=−Grm′m
这以无穷远为零势能点。
(2) 弹性力:
E
p
=
1
2
k
x
2
E_p = \frac{1}{2}kx^2
Ep=21kx2
平衡位置为零势能点
(3) 重力:
E
p
=
m
g
h
E_p = mgh
Ep=mgh
一般以地面为零势能点
4. 质点系的动能定理和机械能守恒定理
质点系动能定理:
W
e
x
+
W
i
n
=
∑
i
=
0
n
E
k
i
−
∑
i
=
0
n
E
k
i
0
W^{ex} + W^{in} = \sum_{i=0}^{n}E_{ki} - \sum_{i=0}^{n}E_{ki0}
Wex+Win=i=0∑nEki−i=0∑nEki0
W
e
x
+
W
n
c
i
n
=
E
−
E
0
W^{ex}+W_{nc}^{in} = E - E_0
Wex+Wncin=E−E0
其中
W
n
c
i
n
W_{nc}^{in}
Wncin 为非保守力,
E
=
E
k
+
E
p
E = E_k + E_p
E=Ek+Ep 为机械能。
W e x + W n c i n = 0 ⇒ E = E 0 , 即 机 械 能 守 恒 W^{ex} + W^{in}_{nc} = 0 \Rightarrow E = E_0, 即机械能守恒 Wex+Wncin=0⇒E=E0,即机械能守恒
四,刚体定轴转动
1. 力矩和转动定理
M
⃗
=
r
⃗
×
F
⃗
=
F
d
=
F
t
r
=
F
r
s
i
n
θ
\vec{M} = \vec{r} \times\vec{F} = Fd = F_tr = Frsin\theta
M=r×F=Fd=Ftr=Frsinθ
其中, d 是力臂,r 是转动半径。
这里要注意两类问题:
(1) 滑轮
当看到滑轮的题目的时候要注意一下,如果没有质量,则是第二章牛顿定律的内容,若有质量,则是转动定理(第四章,即本章)。
(2) 浮板
比如子弹打进浮板。
转动定理:
M
=
J
α
M = J\alpha
M=Jα
J
=
∫
r
2
d
m
J = \int r^2dm
J=∫r2dm
三种情况下的转动惯量要熟记:
(课本P110)
细棒,转动轴通过中心且与棒垂直
J
=
1
12
m
l
2
J = \frac{1}{12} ml^2
J=121ml2
细棒, 转动抽通过棒的一端与棒长垂直
J
=
1
3
m
l
2
J = \frac{1}{3}ml^2
J=31ml2
圆柱体, 转动轴沿集合轴
J
=
1
2
m
R
2
J = \frac{1}{2}mR^2
J=21mR2
2.角动量
L
⃗
=
r
⃗
×
P
⃗
=
m
r
⃗
×
v
⃗
\vec{L} = \vec{r} \times \vec{P} = m\vec{r} \times \vec{v}
L=r×P=mr×v
质点角动量定理的微分形式
M
⃗
=
d
d
t
(
r
⃗
×
m
v
⃗
)
=
d
L
⃗
d
t
\vec{M} = \frac{d}{dt}(\vec{r} \times m\vec{v}) = \frac{d\vec{L}}{dt}
M=dtd(r×mv)=dtdL
质点角动量定理积分形式
∫
t
1
t
2
M
⃗
d
t
=
L
2
⃗
−
L
1
⃗
\int_{t1}^{t2}\vec{M}dt = \vec{L_2} ~-~ \vec{L_1}
∫t1t2Mdt=L2 − L1
M
⃗
=
0
⇒
L
⃗
=
r
⃗
×
m
v
⃗
=
c
⃗
\vec{M} = 0 \Rightarrow \vec{L} = \vec{r} \times m\vec{v} = \vec{c}
M=0⇒L=r×mv=c
一般的质点系动量定理不在本书内容,本书只有特殊的质点系,即刚体的角动量定理
3.刚体的角动量定理
刚体角动量定理:
L
⃗
=
(
∑
i
m
i
r
i
2
)
ω
⃗
=
J
ω
⃗
\vec{L} = (\sum_im_ir_i^2)\vec{\omega} = J\vec{\omega}
L=(i∑miri2)ω=Jω
M
⃗
=
d
d
t
(
J
ω
⃗
)
\vec{M} = \frac{d}{dt}(J\vec{\omega})
M=dtd(Jω)
∫
t
1
t
2
M
⃗
d
t
=
J
2
ω
2
⃗
−
J
1
ω
1
⃗
\int_{t1}^{t2}\vec{M}dt = J_2\vec{\omega_2} - J_1\vec{\omega_1}
∫t1t2Mdt=J2ω2−J1ω1
M
=
0
⇒
C
⃗
M = 0 \Rightarrow \vec{C}
M=0⇒C
4. 转动动能和转动势能
W
=
∫
M
d
θ
W = \int Md\theta
W=∫Mdθ
E
k
=
1
2
J
ω
2
E_k = \frac{1}{2}J\omega^2
Ek=21Jω2
其中,
E
k
E_k
Ek 表示刚体绕轴转动的动能
E
p
=
m
g
h
c
E_p = mgh_c
Ep=mghc
其中,
h
c
h_c
hc 是质量中心距水平面的距离。
刚体绕定轴转动的动能定理:
W
=
1
2
J
ω
2
2
−
1
2
J
ω
1
2
W = \frac{1}{2}J\omega_2^2 ~-~ \frac{1}{2}J\omega_1^2
W=21Jω22 − 21Jω12
W
=
0
E
k
+
E
p
=
C
W = 0 E_k + E_p = C
W=0Ek+Ep=C
机械能守恒.
只有保守内力做功的情况下。
五,静电场
求电场强度E有三种方法,求电势V有两种方法
1.库仑力
F
⃗
=
1
4
π
ε
0
q
1
q
2
r
2
e
r
⃗
\vec{F} = \frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}\vec{e_r}
F=4πε01r2q1q2er
q
1
,
q
2
q_1, q_2
q1,q2 有符号。
E
⃗
=
F
⃗
q
0
\vec{E} = \frac{\vec{F}}{q_0}
E=q0F
其中,
q
0
q_0
q0为单位检验电荷。
2.点电荷电场强度
E
⃗
=
1
4
π
ε
0
Q
r
2
e
r
⃗
\vec{E} = \frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}\vec{e_r}
E=4πε01r2Qer
电场强度叠加原理
E
⃗
=
E
1
⃗
+
E
2
⃗
+
.
.
.
\vec{E} = \vec{E_1} + \vec{E_2} +...
E=E1+E2+...
- 第一条求解
E
⃗
\vec{E}
E :
E ⃗ = ∫ r d E ⃗ = ∫ r 1 4 π ε 0 e r ⃗ r 2 d q \vec{E} = \int_{r}d\vec{E} = \int_r\frac{1}{4\pi \varepsilon_0}\frac{\vec{e_r}}{r^2}dq E=∫rdE=∫r4πε01r2erdq
电偶极矩
P
⃗
=
q
r
0
⃗
\vec{P} = q\vec{r_0}
P=qr0
其中
r
0
⃗
\vec{r_0}
r0 是负电荷指向正电荷。
电场线通量:
Φ
e
=
∫
S
E
⃗
⋅
d
S
⃗
\Phi_e = \int_S \vec{E} \cdot d\vec{S}
Φe=∫SE⋅dS
- 第二条求解电场强度:
∮ E ⃗ ⋅ d S ⃗ = ∑ i q i ε 0 \oint\vec{E} ~\cdot d\vec{S} = \frac{\sum_iq_i}{\varepsilon_0} ∮E ⋅dS=ε0∑iqi
静电场中的高斯定理适用于对称均匀分布的电场。
∮
E
⃗
⋅
d
l
⃗
=
0
\oint \vec{E} ~\cdot d\vec{l} = 0
∮E ⋅dl=0
说明静电场力是保守力,但要注意,涡旋(感应)电场力不是保守力
电势:
E
P
A
⃗
=
q
0
∫
A
B
E
⃗
⋅
d
l
⃗
\vec{E_{PA}} = q_0\int_A^B\vec{E} ~\cdot d\vec{l}
EPA=q0∫ABE ⋅dl
这里
E
P
B
E_{PB}
EPB = 0。
两条求电势的公式:
V
A
=
∫
A
B
E
⃗
⋅
d
l
⃗
+
V
B
V_A = \int_{AB} \vec{E} ~\cdot d\vec{l} ~+ V_B
VA=∫ABE ⋅dl +VB
V = 1 4 π ε 0 ∫ d q r V = \frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε01∫rdq
最后一条求解电场强度的公式:
E
⃗
=
−
∣
d
V
⃗
d
l
n
⃗
∣
e
n
⃗
\vec{E} = -|\frac{d\vec{V}}{d\vec{l_n}}|~\vec{e_n}
E=−∣dlndV∣ en
E
⃗
=
−
∇
V
\vec{E} = -\nabla V
E=−∇V
两条路径:
如果用叠加法,建议先算电势,再算电场强度(因为电势是标量而电场强度是矢量,标量相对容易计算)。
如果电场对称分布,则可以用高斯定理先算出电场强度再算出电势。
六,有介质的静电场
了解静电屏蔽(P200)
1.静电平衡
- 电场强度: 导体内部任何一点处的电场强度为零,表面处电场强度的方向都与导体表面垂直
- 电势: 导体上电势处处相等
- 懂得分析电荷分布(P197)
2.介质
- 有极分子: 取向极化
- 无极分子: 位移极化
E
⃗
=
E
0
⃗
+
E
⃗
′
\vec{E} = \vec{E_0} + \vec{E}'
E=E0+E′
E
=
E
0
⃗
ε
r
E = \frac{\vec{E_0}}{\varepsilon_r}
E=εrE0
3.电极化强度
P
⃗
=
∑
p
⃗
Δ
V
\vec{P} = \frac{\sum\vec{p}}{\Delta V}
P=ΔV∑p
P
⃗
=
σ
′
\vec{P} = \sigma'
P=σ′
其中,
σ
′
\sigma'
σ′是极化电荷面密度。
P
⃗
=
(
ε
r
−
1
)
ε
0
E
⃗
\vec{P} = (\varepsilon_r - 1) ~\varepsilon_0 \vec{E}
P=(εr−1) ε0E
P
⃗
=
ε
0
ε
r
E
⃗
=
ε
E
⃗
\vec{P} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}
P=ε0εrE=εE
有介质下的高斯定理:
∮
D
⃗
⋅
S
⃗
=
Q
0
\oint\vec{D} \cdot \vec{S} = Q_0
∮D⋅S=Q0
求解路径:
σ
0
⇒
D
⃗
⇒
E
⃗
⇒
P
⃗
⇒
σ
′
\sigma_0 \Rightarrow \vec{D} \Rightarrow \vec{E} \Rightarrow \vec{P} \Rightarrow \sigma'
σ0⇒D⇒E⇒P⇒σ′
推导过程是一下四个公式:
∮
D
⃗
d
S
⃗
=
Q
\oint \vec{D}d\vec{S} = Q
∮DdS=Q
D
⃗
=
ε
E
⃗
\vec{D} = \varepsilon \vec{E}
D=εE
P
⃗
=
(
ε
r
−
1
)
ε
0
E
⃗
\vec{P} = (\varepsilon_r - 1)\varepsilon_0 \vec{E}
P=(εr−1)ε0E
P
⃗
=
σ
′
\vec{P} = \sigma'
P=σ′
3. 电容
C
=
Q
U
C = \frac{Q} {U}
C=UQ
平行板:
C
=
ε
S
d
=
ε
0
ε
r
S
d
C = \frac{\varepsilon S}{d} = \frac{\varepsilon_0 \varepsilon_r S}{d}
C=dεS=dε0εrS
电容既是一个器件,也是一种能力。
4.能量
W
=
1
2
Q
U
=
Q
2
2
C
=
1
2
C
U
2
W = \frac{1}{2}QU = \frac{Q^2}{2C} = \frac{1}{2}CU^2
W=21QU=2CQ2=21CU2
w
E
=
1
2
ε
E
2
=
1
2
E
⃗
⋅
D
⃗
w_E = \frac{1}{2} \varepsilon E^2 = \frac{1}{2} \vec{E} \cdot \vec{D}
wE=21εE2=21E⋅D
W
=
∫
V
w
e
d
V
W = \int_Vw_edV
W=∫VwedV
七,恒定磁场
1. 电流
I
=
d
q
d
t
I = \frac{dq}{dt}
I=dtdq
I
=
∫
S
J
⃗
⋅
d
S
⃗
I = \int_S\vec{J} \cdot d\vec{S}
I=∫SJ⋅dS
J
=
e
n
v
d
J = env_d
J=envd
I
=
e
n
v
d
S
I = env_dS
I=envdS
ε
=
∮
l
E
k
⃗
⋅
d
l
⃗
=
∫
内
E
k
⃗
⋅
d
l
⃗
\varepsilon = \oint_l\vec{E_k} \cdot d\vec{l} = \int_内\vec{E_k} \cdot d\vec{l}
ε=∮lEk⋅dl=∫内Ek⋅dl
E
k
⃗
=
F
⃗
′
q
\vec{E_k} = \frac{\vec{F}'}{q}
Ek=qF′
其中,
E
k
⃗
\vec{E_k}
Ek 是非静电场强度。
2. 磁感强度
定义:
B
大
小
=
F
⊥
q
v
B_{大小} = \frac{F_{\perp}}{qv}
B大小=qvF⊥
F
⃗
=
q
v
⃗
×
B
⃗
\vec{F} = q\vec{v} \times \vec{B}
F=qv×B
毕奥萨伐尔定理:
d
B
⃗
=
u
0
4
π
I
d
l
⃗
×
e
r
⃗
r
2
d\vec{B} = \frac{u_0}{4\pi}\frac{Id\vec{l} \times \vec{e_r}}{r^2}
dB=4πu0r2Idl×er
B
=
∫
d
B
⃗
B = \int d\vec{B}
B=∫dB
这里要熟记三种情况
无限长直导线外某点:
B
=
u
0
I
2
π
r
B = \frac{u_0I}{2\pi r}
B=2πru0I
圆形导线的圆心处:
B
=
u
I
2
R
B = \frac{uI}{2R}
B=2RuI
无限长螺绕管内部:
B
=
u
0
n
I
B = u_0nI
B=u0nI
磁矩:
m
⃗
=
I
S
e
n
⃗
\vec{m} = IS\vec{e_n}
m=ISen
右手定则为正法向方向。
磁通量:
Φ
m
=
∫
S
B
⃗
d
S
⃗
\Phi_m = \int_S\vec{B}d\vec{S}
Φm=∫SBdS
磁场的高斯定理
∮
B
⃗
d
S
⃗
=
0
\oint\vec{B}d\vec{S} = 0
∮BdS=0
安培环路定理:
∮
B
⃗
d
l
⃗
=
u
0
∑
i
=
1
n
I
i
\oint\vec{B}d\vec{l} = u_0\sum_{i=1}^{n}I_i
∮Bdl=u0i=1∑nIi
3. 受力
F
⃗
=
q
E
⃗
+
q
v
⃗
×
B
⃗
\vec{F} = q\vec{E}+q\vec{v}\times\vec{B}
F=qE+qv×B
R
=
m
v
q
B
R = \frac{mv}{qB}
R=qBmv
T
=
2
π
m
q
B
T = \frac{2\pi m}{qB}
T=qB2πm
螺距:(
v
⃗
\vec{v}
v不垂直
B
⃗
\vec{B}
B时)
d
=
v
∥
T
=
2
π
m
v
∥
q
B
d = v_{\parallel}T = \frac{2\pi m v_{\parallel}}{qB}
d=v∥T=qB2πmv∥
载流导线在磁场中的受力:
d
F
⃗
=
I
d
l
⃗
×
B
⃗
d\vec{F} = Id\vec{l} \times \vec{B}
dF=Idl×B
F
⃗
=
∫
l
d
F
⃗
\vec{F} = \int_l d\vec{F}
F=∫ldF
M
⃗
=
m
⃗
×
B
⃗
\vec{M} = \vec{m} \times \vec{B}
M=m×B
其中,
M
⃗
\vec{M}
M 为力矩,
m
⃗
\vec{m}
m为磁矩。
4. 磁介质
B
⃗
=
B
0
⃗
+
B
⃗
′
\vec{B} = \vec{B_0} + \vec{B}'
B=B0+B′
其中,
B
⃗
′
\vec{B}'
B′为附加磁感应强度
了解顺磁质, 抗磁质,铁磁质。
M
⃗
=
∑
m
⃗
Δ
V
\vec{M} = \frac{\sum\vec{m}}{\Delta V}
M=ΔV∑m
课本p279:
I
s
=
∣
M
⃗
∣
I_s = |\vec{M}|
Is=∣M∣
H
⃗
=
B
⃗
u
0
−
M
⃗
\vec{H} = \frac{\vec{B}}{u_0} - \vec{M}
H=u0B−M
其中,
H
⃗
\vec{H}
H 为磁场强度,
B
⃗
\vec{B}
B 为磁感强度,
M
⃗
\vec{M}
M 为磁化强度。
M
⃗
=
k
H
⃗
\vec{M} = k\vec{H}
M=kH
B
⃗
=
u
0
u
r
H
⃗
=
u
H
⃗
\vec{B} = u_0u_r\vec{H} = u\vec{H}
B=u0urH=uH
∮ H ⃗ d l ⃗ = ∑ I \oint{\vec{H}}d\vec{l} = \sum{I} ∮Hdl=∑I
计算路径:
I
0
⇒
H
⃗
⇒
B
⃗
⇒
M
⃗
⇒
I
s
I_0 \Rightarrow \vec{H} \Rightarrow \vec{B} \Rightarrow \vec{M} \Rightarrow I_s
I0⇒H⇒B⇒M⇒Is
推导公式如下:
∮
l
H
⃗
d
l
⃗
=
∑
I
0
\oint_l\vec{H}d\vec{l} = \sum I_0
∮lHdl=∑I0
M
⃗
=
k
H
⃗
\vec{M} = k\vec{H}
M=kH
I
s
=
∣
M
⃗
∣
I_s = |\vec{M}|
Is=∣M∣
八,电磁感应和电磁场
1. 法拉第电磁感应
ε
i
=
−
d
Φ
m
d
t
\varepsilon_i = -\frac{d\Phi_m}{dt}
εi=−dtdΦm
负号引出楞次定理。
2. 动生电动势
ε
i
=
∫
O
P
(
v
⃗
×
B
⃗
)
⋅
d
l
⃗
\varepsilon_i = \int_{OP}(\vec{v} \times \vec{B}) \cdot d\vec{l}
εi=∫OP(v×B)⋅dl
满足, v恒定,B恒定,
v
⃗
⊥
B
⃗
\vec{v} \perp \vec{B}
v⊥B, 直棒则有:
ε
i
=
B
v
l
\varepsilon_i = Bvl
εi=Bvl
ε
i
=
∮
E
k
⃗
d
l
⃗
=
−
∫
d
B
⃗
d
t
d
S
⃗
\varepsilon_i = \oint \vec{E_k} d\vec{l} = -\int \frac{d\vec{B}}{dt} d\vec{S}
εi=∮Ekdl=−∫dtdBdS
3. 自感
Φ
=
L
I
\Phi = LI
Φ=LI
ε
L
=
−
L
d
I
d
t
\varepsilon_L = -L\frac{dI}{dt}
εL=−LdtdI
螺绕管
L
=
u
n
2
V
L = un^2V
L=un2V
其中,V是体积, n是单位长度上线圈的匝数。
4.互感
Φ
21
=
M
21
I
1
\Phi_{21} = M_{21}I_1
Φ21=M21I1
ε
21
=
−
M
d
I
1
d
t
\varepsilon_{21} = -M\frac{dI_1}{dt}
ε21=−MdtdI1
5.磁场中的能量
W
m
=
1
2
L
I
2
W_m = \frac{1}{2}LI^2
Wm=21LI2
w
m
=
B
2
2
u
=
1
2
B
⃗
⋅
H
⃗
=
1
2
u
H
2
w_m = \frac{B^2}{2u} = \frac{1}{2}\vec{B} \cdot \vec{H} = \frac{1}{2}u H^2
wm=2uB2=21B⋅H=21uH2
W
m
=
∫
V
w
m
d
V
W_m = \int_Vw_mdV
Wm=∫VwmdV
6.全电流安培环路定理
课本P322
位移电流密度
J
d
J_d
Jd
J
d
=
∂
D
∂
t
J_d = \frac{\partial D}{\partial t}
Jd=∂t∂D
位移电流
I
d
I_d
Id
I
d
=
d
ψ
d
t
I_d = \frac{d\psi}{dt}
Id=dtdψ
全电流
I
s
I_s
Is
I
s
=
I
c
+
I
d
I_s = I_c + I_d
Is=Ic+Id
全电流的安培环路定理
∮
H
⃗
⋅
d
l
⃗
=
∫
S
(
j
c
⃗
+
∂
D
⃗
∂
t
)
⋅
d
S
⃗
\oint \vec{H} \cdot d\vec{l} = \int_{S}(\vec{j_c}~+~ \frac{\partial\vec{D}}{\partial t}) \cdot d\vec{S}
∮H⋅dl=∫S(jc + ∂t∂D)⋅dS
7.麦克斯韦方程组
∮
S
D
⃗
⋅
d
S
⃗
=
∫
V
ρ
d
V
⃗
=
q
\oint_{S}\vec{D} ~\cdot d\vec{S} = \int_V \rho d\vec{V} = q
∮SD ⋅dS=∫VρdV=q
∮
l
E
⃗
⋅
d
l
⃗
=
−
∫
S
∂
B
⃗
∂
t
⋅
d
S
⃗
\oint_l \vec{E} ~\cdot d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} ~\cdot d\vec{S}
∮lE ⋅dl=−∫S∂t∂B ⋅dS
∮
S
B
⃗
⋅
d
S
⃗
=
0
\oint_S \vec{B}~\cdot d\vec{S} = 0
∮SB ⋅dS=0
∮
L
H
⃗
⋅
d
l
⃗
=
∫
S
(
j
⃗
+
∂
D
∂
t
)
⋅
d
S
⃗
\oint_L \vec{H} ~\cdot d\vec{l} = \int_S (\vec{j}~+~\frac{\partial{D}}{\partial t}) ~\cdot d\vec{S}
∮LH ⋅dl=∫S(j + ∂t∂D) ⋅dS
结语
至此主要内容结束。本文仅用于学习,请不要用作其他用途。