大物上重点

前言

早上老师讲了一些重点,这里记录一下(不完全一样,加了一些自己的理解,仅供参考),顺带记下写这篇博客前看到的两个链接, 还不错,喜欢c++的朋友可以看看:

另外, 关于大物的文章传送门:

教材: 马文蔚改编 物理学(第五版)上册 高等教育出版社
转载请注明原文: 大物上重点
https://blog.csdn.net/weixin_43850253/article/details/112217470



一,质点运动学

1. 基本概念

位 矢    r ⃗ 位矢~~\vec{r}   r
v ⃗ = d r ⃗ d t ⃗ \vec{v} = \frac{d\vec{r}}{d\vec{t}} v =dt dr
a ⃗ = d v ⃗ d t = d 2 r ⃗ d t 2 \vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} a =dtdv =dt2d2r
r ⃗ ( x , y , z ) 随 t 变 化 ⇒ 运 动 方 程 \vec{r}(x, y, z)随t变化 \Rightarrow 运动方程 r (x,y,z)t

2.圆周运动

v ⃗ = v e t ⃗ \vec{v} = v\vec{e_t} v =vet
其中, e t ⃗ \vec{e_t} et 表示切线方向的单位元。
ω = d θ d t \omega = \frac{d\theta}{dt} ω=dtdθ
α = d ω d t = d 2 θ d t 2 \alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} α=dtdω=dt2d2θ
v = r ω v = r\omega v=rω
a t ⃗ = d v d t e t ⃗ = r α ⃗ e t \vec{a_t} = \frac{dv}{dt}\vec{e_t} = r\alpha \vec{}e_t at =dtdvet =rα et
a n ⃗ = v 2 r e n ⃗ = r ω e t ⃗ \vec{a_n} = \frac{v^2}{r} \vec{e_n} = r\omega\vec{e_t} an =rv2en =rωet

3. 相对运动

△ r ⃗ = △ r ⃗ ′ + △ D ⃗ \triangle \vec{r} = \triangle\vec{r}' + \triangle\vec{D} r =r +D
绝对位移 = 相对位移 + 牵连位移
v ⃗ = v ⃗ ′ + u ⃗ \vec{v} = \vec{v}' + \vec{u} v =v +u
a ⃗ = a ⃗ ′ + a n ⃗ \vec{a} = \vec{a}' + \vec{a_n} a =a +an
注意一下阿特伍德机(Atwood, P 38)



二,牛顿定律

1.动量

p ⃗ = m v ⃗ \vec{p} = m \vec{v} p =mv
位移+ 动量 ⇒ \Rightarrow 运动状态

2.动量与力

F ⃗ = d p ⃗ d t \vec{F} = \frac{d\vec{p}}{dt} F =dtdp
适用于高速,变质量问题
F ⃗ = m a ⃗ \vec{F} = m\vec{a} F =ma
这个只能是m固定才行


F t ⃗ = m a t ⃗ = m d v d t e t ⃗ \vec{F_t} = m\vec{a_t} = m\frac{dv}{dt}\vec{e_t} Ft =mat =mdtdvet
其中, F t ⃗ \vec{F_t} Ft 为切向力.
F n ⃗ = m a n ⃗ = m v 2 ρ e n ⃗ \vec{F_n} = m\vec{a_n} = m\frac{v^2}{\rho}\vec{e_n} Fn =man =mρv2en
其中 F n ⃗ \vec{F_n} Fn 为向心力(法向力)


3. 几种常见力

(1)万有引力
F ⃗ = − G m 1 m 2 r 2 e r ⃗ \vec{F} = -G\frac{m_1m_2}{r^2}\vec{e_r} F =Gr2m1m2er
(2)重力:
P ⃗ = m g ⃗ \vec{P} = m\vec{g} P =mg
其中, g = G m E R 2 g=\frac{Gm_E}{R^2} g=R2GmE

(3)弹性力:
F = − k x F = -kx F=kx
(4)最大静摩擦力:
F f o M = u 0 F N F_{foM} = u_0F_N FfoM=u0FN
(5)动摩擦力
F f = u F N F_f = uF_N Ff=uFN


4.两个注意的问题

(1)阿特伍德机(P38)
非惯性系列牛顿第二定理

(2)变力
F随着v变, 如空气阻力
弄出来是一个常微分方程,这个时候使用分离变量法
大于两个变量则转为两个变量




三,动量和能量

1. 动量

I ⃗ = ∫ t 1 t 2 F ( t ) ⃗ d t \vec{I} = \int_{t1}^{t2}\vec{F(t)}dt I =t1t2F(t) dt
质点的动量定理
I ⃗ = m v 2 ⃗   −   m v 1 ⃗ \vec{I} = m\vec{v_2} ~-~ m\vec{v_1} I =mv2   mv1
质点系的动量定理
∫ t 1 t 2 F ⃗ e x d t = ∑ i = 0 n m i v i − ∑ i = 0 n m i v i 0 \int_{t1}^{t2}\vec{F}^{ex}dt = \sum_{i=0}^{n}m_iv_i - \sum_{i=0}^{n}m_iv_{i0} t1t2F exdt=i=0nmivii=0nmivi0
其中, F ⃗ e x \vec{F}^{ex} F ex表示合外力
F ⃗ e x \vec{F}^{ex} F ex = 0 ⇒ P ⃗ = C ⃗ \Rightarrow \vec{P} = \vec{C} P =C ,即合外力为0时,总动量不变。


2. 动能

W = ∫ A B F ⃗ ⋅ d r ⃗ W = \int_{A}^{B}\vec{F}\cdot d\vec{r} W=ABF dr
其中, d r ⃗ d\vec{r} dr 表示为位移元。
E k = 1 2 m v 2 = P 2 2 m E_k = \frac{1}{2}mv^2=\frac{P^2}{2m} Ek=21mv2=2mP2
其中, E k E_k Ek 表示动能
质点的动能定理:
W = E k 2 − E k 1 W = E_{k2} - E_{k1} W=Ek2Ek1

3.保守力

W = ∮ F ⃗ ⋅ d r ⃗ = 0 W = \oint{\vec{F}\cdot d\vec{r}} = 0 W=F dr =0
F ⃗ \vec{F} F 做的功和路径无关.
这两个可以一个为定义,一个为性质,它们是可以互相推导的。
三个常见的保守力
(1) 万有引力:
E p = − G m ′ m r E_p = -G\frac{m'm}{r} Ep=Grmm
这以无穷远为零势能点。
(2) 弹性力:
E p = 1 2 k x 2 E_p = \frac{1}{2}kx^2 Ep=21kx2
平衡位置为零势能点
(3) 重力:
E p = m g h E_p = mgh Ep=mgh
一般以地面为零势能点


4. 质点系的动能定理和机械能守恒定理

质点系动能定理:
W e x + W i n = ∑ i = 0 n E k i − ∑ i = 0 n E k i 0 W^{ex} + W^{in} = \sum_{i=0}^{n}E_{ki} - \sum_{i=0}^{n}E_{ki0} Wex+Win=i=0nEkii=0nEki0
W e x + W n c i n = E − E 0 W^{ex}+W_{nc}^{in} = E - E_0 Wex+Wncin=EE0
其中 W n c i n W_{nc}^{in} Wncin 为非保守力, E = E k + E p E = E_k + E_p E=Ek+Ep 为机械能。

W e x + W n c i n = 0 ⇒ E = E 0 , 即 机 械 能 守 恒 W^{ex} + W^{in}_{nc} = 0 \Rightarrow E = E_0, 即机械能守恒 Wex+Wncin=0E=E0,



四,刚体定轴转动

1. 力矩和转动定理

M ⃗ = r ⃗ × F ⃗ = F d = F t r = F r s i n θ \vec{M} = \vec{r} \times\vec{F} = Fd = F_tr = Frsin\theta M =r ×F =Fd=Ftr=Frsinθ
其中, d 是力臂,r 是转动半径。
这里要注意两类问题:
(1) 滑轮
当看到滑轮的题目的时候要注意一下,如果没有质量,则是第二章牛顿定律的内容,若有质量,则是转动定理(第四章,即本章)。
(2) 浮板
比如子弹打进浮板。

转动定理:
M = J α M = J\alpha M=Jα
J = ∫ r 2 d m J = \int r^2dm J=r2dm
三种情况下的转动惯量要熟记:
(课本P110)
细棒,转动轴通过中心且与棒垂直
J = 1 12 m l 2 J = \frac{1}{12} ml^2 J=121ml2
细棒, 转动抽通过棒的一端与棒长垂直
J = 1 3 m l 2 J = \frac{1}{3}ml^2 J=31ml2
圆柱体, 转动轴沿集合轴
J = 1 2 m R 2 J = \frac{1}{2}mR^2 J=21mR2

2.角动量

L ⃗ = r ⃗ × P ⃗ = m r ⃗ × v ⃗ \vec{L} = \vec{r} \times \vec{P} = m\vec{r} \times \vec{v} L =r ×P =mr ×v
质点角动量定理的微分形式
M ⃗ = d d t ( r ⃗ × m v ⃗ ) = d L ⃗ d t \vec{M} = \frac{d}{dt}(\vec{r} \times m\vec{v}) = \frac{d\vec{L}}{dt} M =dtd(r ×mv )=dtdL
质点角动量定理积分形式
∫ t 1 t 2 M ⃗ d t = L 2 ⃗   −   L 1 ⃗ \int_{t1}^{t2}\vec{M}dt = \vec{L_2} ~-~ \vec{L_1} t1t2M dt=L2   L1
M ⃗ = 0 ⇒ L ⃗ = r ⃗ × m v ⃗ = c ⃗ \vec{M} = 0 \Rightarrow \vec{L} = \vec{r} \times m\vec{v} = \vec{c} M =0L =r ×mv =c
一般的质点系动量定理不在本书内容,本书只有特殊的质点系,即刚体的角动量定理


3.刚体的角动量定理

刚体角动量定理:
L ⃗ = ( ∑ i m i r i 2 ) ω ⃗ = J ω ⃗ \vec{L} = (\sum_im_ir_i^2)\vec{\omega} = J\vec{\omega} L =(imiri2)ω =Jω
M ⃗ = d d t ( J ω ⃗ ) \vec{M} = \frac{d}{dt}(J\vec{\omega}) M =dtd(Jω )
∫ t 1 t 2 M ⃗ d t = J 2 ω 2 ⃗ − J 1 ω 1 ⃗ \int_{t1}^{t2}\vec{M}dt = J_2\vec{\omega_2} - J_1\vec{\omega_1} t1t2M dt=J2ω2 J1ω1
M = 0 ⇒ C ⃗ M = 0 \Rightarrow \vec{C} M=0C


4. 转动动能和转动势能

W = ∫ M d θ W = \int Md\theta W=Mdθ
E k = 1 2 J ω 2 E_k = \frac{1}{2}J\omega^2 Ek=21Jω2
其中, E k E_k Ek 表示刚体绕轴转动的动能
E p = m g h c E_p = mgh_c Ep=mghc
其中, h c h_c hc 是质量中心距水平面的距离。

刚体绕定轴转动的动能定理:
W = 1 2 J ω 2 2   −   1 2 J ω 1 2 W = \frac{1}{2}J\omega_2^2 ~-~ \frac{1}{2}J\omega_1^2 W=21Jω22  21Jω12
W = 0 E k + E p = C W = 0 E_k + E_p = C W=0Ek+Ep=C
机械能守恒.
只有保守内力做功的情况下。



五,静电场

求电场强度E有三种方法,求电势V有两种方法

1.库仑力

F ⃗ = 1 4 π ε 0 q 1 q 2 r 2 e r ⃗ \vec{F} = \frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}\vec{e_r} F =4πε01r2q1q2er
q 1 , q 2 q_1, q_2 q1,q2 有符号。
E ⃗ = F ⃗ q 0 \vec{E} = \frac{\vec{F}}{q_0} E =q0F
其中, q 0 q_0 q0为单位检验电荷。

2.点电荷电场强度

E ⃗ = 1 4 π ε 0 Q r 2 e r ⃗ \vec{E} = \frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}\vec{e_r} E =4πε01r2Qer
电场强度叠加原理
E ⃗ = E 1 ⃗ + E 2 ⃗ + . . . \vec{E} = \vec{E_1} + \vec{E_2} +... E =E1 +E2 +...

  • 第一条求解 E ⃗ \vec{E} E :
    E ⃗ = ∫ r d E ⃗ = ∫ r 1 4 π ε 0 e r ⃗ r 2 d q \vec{E} = \int_{r}d\vec{E} = \int_r\frac{1}{4\pi \varepsilon_0}\frac{\vec{e_r}}{r^2}dq E =rdE =r4πε01r2er dq



电偶极矩
P ⃗ = q r 0 ⃗ \vec{P} = q\vec{r_0} P =qr0
其中 r 0 ⃗ \vec{r_0} r0 是负电荷指向正电荷。


电场线通量:
Φ e = ∫ S E ⃗ ⋅ d S ⃗ \Phi_e = \int_S \vec{E} \cdot d\vec{S} Φe=SE dS

  • 第二条求解电场强度:
    ∮ E ⃗   ⋅ d S ⃗ = ∑ i q i ε 0 \oint\vec{E} ~\cdot d\vec{S} = \frac{\sum_iq_i}{\varepsilon_0} E  dS =ε0iqi
    静电场中的高斯定理适用于对称均匀分布的电场。



∮ E ⃗   ⋅ d l ⃗ = 0 \oint \vec{E} ~\cdot d\vec{l} = 0 E  dl =0
说明静电场力是保守力,但要注意,涡旋(感应)电场力不是保守力


电势:
E P A ⃗ = q 0 ∫ A B E ⃗   ⋅ d l ⃗ \vec{E_{PA}} = q_0\int_A^B\vec{E} ~\cdot d\vec{l} EPA =q0ABE  dl
这里 E P B E_{PB} EPB = 0。


两条求电势的公式:
V A = ∫ A B E ⃗   ⋅ d l ⃗   + V B V_A = \int_{AB} \vec{E} ~\cdot d\vec{l} ~+ V_B VA=ABE  dl  +VB

V = 1 4 π ε 0 ∫ d q r V = \frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε01rdq



最后一条求解电场强度的公式:
E ⃗ = − ∣ d V ⃗ d l n ⃗ ∣   e n ⃗ \vec{E} = -|\frac{d\vec{V}}{d\vec{l_n}}|~\vec{e_n} E =dln dV  en
E ⃗ = − ∇ V \vec{E} = -\nabla V E =V
两条路径:
如果用叠加法,建议先算电势,再算电场强度(因为电势是标量而电场强度是矢量,标量相对容易计算)。
如果电场对称分布,则可以用高斯定理先算出电场强度再算出电势。




六,有介质的静电场

了解静电屏蔽(P200)

1.静电平衡

  • 电场强度: 导体内部任何一点处的电场强度为零,表面处电场强度的方向都与导体表面垂直
  • 电势: 导体上电势处处相等
  • 懂得分析电荷分布(P197)

2.介质

  • 有极分子: 取向极化
  • 无极分子: 位移极化

E ⃗ = E 0 ⃗ + E ⃗ ′ \vec{E} = \vec{E_0} + \vec{E}' E =E0 +E
E = E 0 ⃗ ε r E = \frac{\vec{E_0}}{\varepsilon_r} E=εrE0


3.电极化强度

P ⃗ = ∑ p ⃗ Δ V \vec{P} = \frac{\sum\vec{p}}{\Delta V} P =ΔVp
P ⃗ = σ ′ \vec{P} = \sigma' P =σ
其中, σ ′ \sigma' σ是极化电荷面密度。

P ⃗ = ( ε r − 1 )   ε 0 E ⃗ \vec{P} = (\varepsilon_r - 1) ~\varepsilon_0 \vec{E} P =(εr1) ε0E
P ⃗ = ε 0 ε r E ⃗ = ε E ⃗ \vec{P} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E} P =ε0εrE =εE

有介质下的高斯定理:
∮ D ⃗ ⋅ S ⃗ = Q 0 \oint\vec{D} \cdot \vec{S} = Q_0 D S =Q0


求解路径:
σ 0 ⇒ D ⃗ ⇒ E ⃗ ⇒ P ⃗ ⇒ σ ′ \sigma_0 \Rightarrow \vec{D} \Rightarrow \vec{E} \Rightarrow \vec{P} \Rightarrow \sigma' σ0D E P σ
推导过程是一下四个公式:
∮ D ⃗ d S ⃗ = Q \oint \vec{D}d\vec{S} = Q D dS =Q
D ⃗ = ε E ⃗ \vec{D} = \varepsilon \vec{E} D =εE
P ⃗ = ( ε r − 1 ) ε 0 E ⃗ \vec{P} = (\varepsilon_r - 1)\varepsilon_0 \vec{E} P =(εr1)ε0E
P ⃗ = σ ′ \vec{P} = \sigma' P =σ



3. 电容

C = Q U C = \frac{Q} {U} C=UQ
平行板:
C = ε S d = ε 0 ε r S d C = \frac{\varepsilon S}{d} = \frac{\varepsilon_0 \varepsilon_r S}{d} C=dεS=dε0εrS
电容既是一个器件,也是一种能力。



4.能量

W = 1 2 Q U = Q 2 2 C = 1 2 C U 2 W = \frac{1}{2}QU = \frac{Q^2}{2C} = \frac{1}{2}CU^2 W=21QU=2CQ2=21CU2
w E = 1 2 ε E 2 = 1 2 E ⃗ ⋅ D ⃗ w_E = \frac{1}{2} \varepsilon E^2 = \frac{1}{2} \vec{E} \cdot \vec{D} wE=21εE2=21E D
W = ∫ V w e d V W = \int_Vw_edV W=VwedV




七,恒定磁场

1. 电流

I = d q d t I = \frac{dq}{dt} I=dtdq
I = ∫ S J ⃗ ⋅ d S ⃗ I = \int_S\vec{J} \cdot d\vec{S} I=SJ dS
J = e n v d J = env_d J=envd
I = e n v d S I = env_dS I=envdS
ε = ∮ l E k ⃗ ⋅ d l ⃗ = ∫ 内 E k ⃗ ⋅ d l ⃗ \varepsilon = \oint_l\vec{E_k} \cdot d\vec{l} = \int_内\vec{E_k} \cdot d\vec{l} ε=lEk dl =Ek dl

E k ⃗ = F ⃗ ′ q \vec{E_k} = \frac{\vec{F}'}{q} Ek =qF
其中, E k ⃗ \vec{E_k} Ek 是非静电场强度。



2. 磁感强度

定义:
B 大 小 = F ⊥ q v B_{大小} = \frac{F_{\perp}}{qv} B=qvF
F ⃗ = q v ⃗ × B ⃗ \vec{F} = q\vec{v} \times \vec{B} F =qv ×B
毕奥萨伐尔定理:
d B ⃗ = u 0 4 π I d l ⃗ × e r ⃗ r 2 d\vec{B} = \frac{u_0}{4\pi}\frac{Id\vec{l} \times \vec{e_r}}{r^2} dB =4πu0r2Idl ×er
B = ∫ d B ⃗ B = \int d\vec{B} B=dB

这里要熟记三种情况
无限长直导线外某点:
B = u 0 I 2 π r B = \frac{u_0I}{2\pi r} B=2πru0I
圆形导线的圆心处:
B = u I 2 R B = \frac{uI}{2R} B=2RuI
无限长螺绕管内部:
B = u 0 n I B = u_0nI B=u0nI




磁矩:
m ⃗ = I S e n ⃗ \vec{m} = IS\vec{e_n} m =ISen
右手定则为正法向方向。

磁通量:
Φ m = ∫ S B ⃗ d S ⃗ \Phi_m = \int_S\vec{B}d\vec{S} Φm=SB dS

磁场的高斯定理
∮ B ⃗ d S ⃗ = 0 \oint\vec{B}d\vec{S} = 0 B dS =0

安培环路定理:
∮ B ⃗ d l ⃗ = u 0 ∑ i = 1 n I i \oint\vec{B}d\vec{l} = u_0\sum_{i=1}^{n}I_i B dl =u0i=1nIi



3. 受力

F ⃗ = q E ⃗ + q v ⃗ × B ⃗ \vec{F} = q\vec{E}+q\vec{v}\times\vec{B} F =qE +qv ×B
R = m v q B R = \frac{mv}{qB} R=qBmv
T = 2 π m q B T = \frac{2\pi m}{qB} T=qB2πm
螺距:( v ⃗ \vec{v} v 不垂直 B ⃗ \vec{B} B 时)
d = v ∥ T = 2 π m v ∥ q B d = v_{\parallel}T = \frac{2\pi m v_{\parallel}}{qB} d=vT=qB2πmv



载流导线在磁场中的受力:
d F ⃗ = I d l ⃗ × B ⃗ d\vec{F} = Id\vec{l} \times \vec{B} dF =Idl ×B
F ⃗ = ∫ l d F ⃗ \vec{F} = \int_l d\vec{F} F =ldF
M ⃗ = m ⃗ × B ⃗ \vec{M} = \vec{m} \times \vec{B} M =m ×B
其中, M ⃗ \vec{M} M 为力矩, m ⃗ \vec{m} m 为磁矩。



4. 磁介质

B ⃗ = B 0 ⃗ + B ⃗ ′ \vec{B} = \vec{B_0} + \vec{B}' B =B0 +B
其中, B ⃗ ′ \vec{B}' B 为附加磁感应强度
了解顺磁质, 抗磁质,铁磁质。

M ⃗ = ∑ m ⃗ Δ V \vec{M} = \frac{\sum\vec{m}}{\Delta V} M =ΔVm
课本p279:
I s = ∣ M ⃗ ∣ I_s = |\vec{M}| Is=M
H ⃗ = B ⃗ u 0 − M ⃗ \vec{H} = \frac{\vec{B}}{u_0} - \vec{M} H =u0B M
其中, H ⃗ \vec{H} H 为磁场强度, B ⃗ \vec{B} B 为磁感强度, M ⃗ \vec{M} M 为磁化强度。

M ⃗ = k H ⃗ \vec{M} = k\vec{H} M =kH
B ⃗ = u 0 u r H ⃗ = u H ⃗ \vec{B} = u_0u_r\vec{H} = u\vec{H} B =u0urH =uH

∮ H ⃗ d l ⃗ = ∑ I \oint{\vec{H}}d\vec{l} = \sum{I} H dl =I

计算路径:
I 0 ⇒ H ⃗ ⇒ B ⃗ ⇒ M ⃗ ⇒ I s I_0 \Rightarrow \vec{H} \Rightarrow \vec{B} \Rightarrow \vec{M} \Rightarrow I_s I0H B M Is
推导公式如下:
∮ l H ⃗ d l ⃗ = ∑ I 0 \oint_l\vec{H}d\vec{l} = \sum I_0 lH dl =I0
M ⃗ = k H ⃗ \vec{M} = k\vec{H} M =kH
I s = ∣ M ⃗ ∣ I_s = |\vec{M}| Is=M




八,电磁感应和电磁场

1. 法拉第电磁感应

ε i = − d Φ m d t \varepsilon_i = -\frac{d\Phi_m}{dt} εi=dtdΦm
负号引出楞次定理。


2. 动生电动势

ε i = ∫ O P ( v ⃗ × B ⃗ ) ⋅ d l ⃗ \varepsilon_i = \int_{OP}(\vec{v} \times \vec{B}) \cdot d\vec{l} εi=OP(v ×B )dl
满足, v恒定,B恒定, v ⃗ ⊥ B ⃗ \vec{v} \perp \vec{B} v B , 直棒则有:
ε i = B v l \varepsilon_i = Bvl εi=Bvl

ε i = ∮ E k ⃗ d l ⃗ = − ∫ d B ⃗ d t d S ⃗ \varepsilon_i = \oint \vec{E_k} d\vec{l} = -\int \frac{d\vec{B}}{dt} d\vec{S} εi=Ek dl =dtdB dS


3. 自感

Φ = L I \Phi = LI Φ=LI
ε L = − L d I d t \varepsilon_L = -L\frac{dI}{dt} εL=LdtdI
螺绕管
L = u n 2 V L = un^2V L=un2V
其中,V是体积, n是单位长度上线圈的匝数。


4.互感

Φ 21 = M 21 I 1 \Phi_{21} = M_{21}I_1 Φ21=M21I1
ε 21 = − M d I 1 d t \varepsilon_{21} = -M\frac{dI_1}{dt} ε21=MdtdI1



5.磁场中的能量

W m = 1 2 L I 2 W_m = \frac{1}{2}LI^2 Wm=21LI2
w m = B 2 2 u = 1 2 B ⃗ ⋅ H ⃗ = 1 2 u H 2 w_m = \frac{B^2}{2u} = \frac{1}{2}\vec{B} \cdot \vec{H} = \frac{1}{2}u H^2 wm=2uB2=21B H =21uH2
W m = ∫ V w m d V W_m = \int_Vw_mdV Wm=VwmdV



6.全电流安培环路定理

课本P322
位移电流密度 J d J_d Jd
J d = ∂ D ∂ t J_d = \frac{\partial D}{\partial t} Jd=tD
位移电流 I d I_d Id
I d = d ψ d t I_d = \frac{d\psi}{dt} Id=dtdψ
全电流 I s I_s Is
I s = I c + I d I_s = I_c + I_d Is=Ic+Id
全电流的安培环路定理
∮ H ⃗ ⋅ d l ⃗ = ∫ S ( j c ⃗   +   ∂ D ⃗ ∂ t ) ⋅ d S ⃗ \oint \vec{H} \cdot d\vec{l} = \int_{S}(\vec{j_c}~+~ \frac{\partial\vec{D}}{\partial t}) \cdot d\vec{S} H dl =S(jc  + tD )dS



7.麦克斯韦方程组

∮ S D ⃗   ⋅ d S ⃗ = ∫ V ρ d V ⃗ = q \oint_{S}\vec{D} ~\cdot d\vec{S} = \int_V \rho d\vec{V} = q SD  dS =VρdV =q
∮ l E ⃗   ⋅ d l ⃗ = − ∫ S ∂ B ⃗ ∂ t   ⋅ d S ⃗ \oint_l \vec{E} ~\cdot d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} ~\cdot d\vec{S} lE  dl =StB  dS
∮ S B ⃗   ⋅ d S ⃗ = 0 \oint_S \vec{B}~\cdot d\vec{S} = 0 SB  dS =0
∮ L H ⃗   ⋅ d l ⃗ = ∫ S ( j ⃗   +   ∂ D ∂ t )   ⋅ d S ⃗ \oint_L \vec{H} ~\cdot d\vec{l} = \int_S (\vec{j}~+~\frac{\partial{D}}{\partial t}) ~\cdot d\vec{S} LH  dl =S(j  + tD) dS




结语

至此主要内容结束。本文仅用于学习,请不要用作其他用途。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值