一文搞懂:提示词和提示词工程,超详细

网上充斥着各种类型的提示词模板,也有大量的文章在写提示词工程,而且在招聘网站上提示词工程师的薪水还非常的高。

那么提示词和提示词工程到底有什么区别呢?为什么提示词工程师的薪水会非常的高呢?

今天一文帮你搞懂。

一、提示词与提示词工程的起源与定义

提示词(Prompt)的概念最早伴随大语言模型(LLM)的兴起而普及。2020年后,随着GPT-3等模型的突破性进展,提示词工程(Prompt Engineering)逐渐成为一门系统性学科。特别是吴恩达在YouTube上分享的提示词工程一系列教学视频后,更把让提示词工程一次在AI专业领域被熟知。

那么如何正确理解提示词和提示词工程这个概念呢?

我们先从下面这张图来看:

首先,提示词是与生成式AI大模型进行交互的主要手段。

其次,提示词的内容包含来源,包括数据库信息、提示词的库、使用者自己输入的内容等;

最后,这些提示词的内容按照提示词的规范、一定的方法最终组合为一段提示词,提交给AI大模型。

因此,我们可以给提示词和提示词工程下一个概念就是:

1.1 概念解读

• 提示词:用户向AI模型输入的指令或问题,例如“写一篇关于碳中和的科普文章”。

提示词的作用:通过适当的提示词,我们可以引导模型生成预期的内容,从而使其在特定任务上表现更好。提示词可以是直接的提问、陈述、描述或是带有上下文的句子。

• 提示词工程:围绕提示词设计、优化和评估的系统化方法,包含结构设计、上下文管理、模型行为控制等。


提示词和提示词工程的区别就是:

提示词是单次交互的“指令(Instructions)”,而提示词工程是涵盖全流程的“方法论(Methodologies)”。

提示词工程需考虑模型特性(如推理能力、知识边界)、任务场景(如创作类vs分析类)和用户需求(如风格、格式)的协同优化。

比如:传统的模糊指令如“写首诗” → AI可能生成《量子力学的十四行抒情》,而结构化提示如“用李白风格写七夕情诗,每句含‘星河’意象” → 输出浪漫且符合预期的诗句。

提示词工程让普通用户无需懂代码,就能通过自然语言“编程”大模型,被称为“非程序员与大模型对话的API接口”。

系统提示词和用户提示词

系统提示词的原理:
我们知道AI大模型本身是没有记忆功能的,那为什么我们使用AI大模型对话时,他能够记住我们的上下文信息呢?

本质上来说:我们使用的对话界面是专门开发出的“AI大模型的对话应用”,这个应用本身使用了存储,来存储我们之前的对话和大模型的输出,你下次再对话式,AI大模型对话应用其实是把你之前的输入内容、输出内容连同你本次的内容一块给到大模型,重新输出的。

所以,在AI大模型开发中,为了让AI大模型始终能够在一个特定领域内回答,我们就给AI大模型设定“系统提示词”,相当于每次对话AI大模型都会携带这个系统提示词与AI大模型进行对话。

所以,我们可以给系统提示词和用户提示词进行一个定义:


• 系统提示词:用来定义大模型的角色、行为规范和回答的框架,是全局性的提示词,每次回话都会自动携带的。

•  用户提示词:即用户输入给大模型的具体指令,用来表明用户希望它做什么。

1.2 为什么需要提示词?——大模型的“对话密码”

大型语言模型本质是概率生成器,其输出依赖输入的上下文(context)相关性。例如:

输入“量子力学是什么?” → 模型根据概率分布生成基础解释。

输入“用火锅店经营比喻量子纠缠” → 触发模型构建跨领域类比。

提示词的核心价值

降低模糊性:明确指令可缩小模型的“猜测空间”。例如“面向30岁职场女性的时间管理指南”比“写时间管理文章”更精准。

激发模型潜力:通过结构化提示(如分步推理、角色代入)可解锁复杂任务处理能力。(案例:跨境电商文案优化中,提示词可嵌入SEO关键词并规避文化禁忌)

二、提示词如何构成?提示词构成要素

对于非工程师的项目,我们日常使用AI大模型时,我们一般仅需要按照prompt的基本构成要素,就可以完成我们90%以上的工作任务。

一般来说,一个完整的Prompt应该包含清晰的指示、相关的上下文、有助于理解的例子、明确的输入以及期望的输出格式描述。

指示(Instructions) - 关键词:任务描述(“明确KPI”)

这是提示词的灵魂,相当于给大模型下达“工作订单”。模糊指令如“写篇文章”会让大模型陷入迷茫,而精准任务描述能直接锁定输出方向。案例:“撰写一篇面向职场新人的时间管理指南,包含3个实用工具和真实案例”  

上下文(Context) - 关键词:背景信息(“装导航地图”)

通过上下文背景信息能框定大模型的认知边界。当你说“分析销量”,而没有在上下文限制领域,大模型可能从宇宙大爆炸讲起。

案例:“你是一家母婴电商的数据分析师,需对比2024年Q1-Q3纸尿裤品类在长三角地区的销售数据” 

例子(Examples) - 关键词:示范学习(“参考答案”)

人类需要范文指导,大模型也需要案例锚定输出标准。案例:“请用小红书爆款笔记风格写防晒霜推荐,参考示例:  标题:今夏晒不黑的秘密被我挖到了!  正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...”  

输入(Input) - 关键词:数据输入(“加工原料”)

大模型不是全知上帝,也有幻觉问题,经常性已读乱回。结构化输入数据能避免“凭空瞎编”。

案例:“根据以下用户调研数据生成报告:  - 受访者:500名25-35岁一线城市白领  - 痛点TOP3:通勤时间长(68%)、会议低效(55%)、加班文化(49%)”  

输出(Output)- 关键词:结果格式(“设计图纸”)

不规定输出形式,AI可能把周报写成《西游记》降妖报告。格式指令是交付质量的保险杠。

案例:“用Markdown表格对比3款项目管理软件,包含价格、核心功能、适用团队规模三列”  

三、提示词工程基本应用

3.1 工程级“提示词要素”构成

如果我们计划使用AI大模型来完成更为复杂的任务,需要AI大模型能够输出更加精准的内容,那么就需要以工程级别的思维来对提示词进行优化。这也是提示词工程的定义。

这样我们可以优化和扩展提示词,使其符合工程级别的要求。

1.角色定义

作用:通过身份限定(如“数据分析师”“唐代诗人”)激活AI的领域知识库,避免通用化回答。例如,让AI扮演“营养师”时,其输出会自然包含膳食搭配、热量计算等专业内容。

案例:在公文写作中,“你作为××市文旅局办公室秘书”的设定,能确保生成的会议通知符合党政机关公文格式。

2.指示(Instructions)

作用:任务描述的清晰度直接影响AI的“思考方向”。模糊指令如“分析数据”可能得到笼统结论,而“用柱状图对比2023年Q1-Q4华北、华东销售额(单位:万元)”则能触发结构化输出。

误区:避免多任务混杂(如“分析数据并写诗”),需拆分为独立指令。

3.背景信息

作用:相当于给AI“装导航地图”。例如,在分析“远程办公趋势”时补充“2025年全球混合办公普及率达63%”的数据,能提升结论可信度。

技巧:对于专业领域(如法律、医学),需提供术语表或参考文献链接。

4.输入(Input)

作用:结构化数据输入是抑制AI“幻觉”的关键。例如,在生成市场报告时,明确“受访者样本量500人,年龄25-35岁”可避免虚构数据。

进阶:可通过表格、JSON等格式输入多维数据,帮助AI建立关联分析。

5.例子(Examples)

作用:示范学习(Few-Shot Learning)能显著提升输出一致性。例如,提供“标题含数字悬念(如‘3个技巧’)、正文带表情符号”的案例,AI更容易模仿小红书风格。

注意:示例需与任务强相关,避免误导(如用科幻案例指导公文写作)。

6.输出(Output)

作用:格式约束是交付质量的“保险杠”。例如,要求“用APA格式引用文献”可避免学术不端,而“生成Python代码并添加注释”则便于开发者直接调用。

创新:多模态任务中可混合格式,如“报告正文用Markdown,数据图表用SVG矢量图”。

7.核心目标(Core Objective)

作用:核心目标是提示词的“导航地图”,需明确任务本质和预期成果。它通过量化指标(如字数、功能模块)提升结果可控性,同时结合行业特性(如学术严谨性、营销转化率)定制目标。

案例:

电商场景:“生成10条含‘环保材料’的标题,适配北美市场,符合亚马逊算法规则”。

学术写作:“学生能绘制太阳系结构图,并解释航天器轨道原理”。

设计要点:

SMART原则:具体(Specific)、可衡量(Measurable)、可达成(Achievable)、相关性(Relevant)、时限性(Time-bound);

分层设计:从战略目标(品牌塑造)到执行目标(单篇文案KPI)逐级拆解。

8.风格规范(Style Guidelines)

作用:控制语言调性、情感色彩和表现形式,需与用户身份、场景强关联。例如科技文案需“理性严谨”,母婴内容需“温暖亲和”。

案例:

新媒体文案:小红书爆款笔记要求“标题含表情符号,正文用‘姐妹安利’口吻”;

法律文书:“用第三人称被动语态,禁用口语化表述”。

设计要点:

关键词锚定:如“口语化”“严肃性”等标签;

跨文化适配:针对不同地区调整语言习惯(如美式幽默 vs 日式含蓄)。

9.格式约束(Format Constraints)

作用:规定输出的结构化要求,确保内容可直接应用。例如学术论文需符合期刊模板,商业报告需匹配企业VI。

案例:

数据分析:“用Tableau格式可视化,关键结论用黄色高亮标注”;

代码生成:“函数注释用Google风格,变量名采用snake_case”。

设计要点:

模板化指令:如“按‘痛点-方案-价值’结构撰写”;

容错机制:设定备选格式(如“优先用PPT,若无则输出Markdown大纲”)。

10.限制条件(Constraints)

作用:排除无效或高风险输出,涵盖内容边界、合规性、资源限制。例如AI绘图禁用NSFW内容,文案规避种族歧视表述。

案例:

技术限制:“仅使用Python 3.8+语法,运行时内存不超过2GB”;

伦理约束:“标注‘非专业诊断建议’,拒绝回答具体用药剂量”。

设计要点:

显式否定指令:如“禁用第一人称”“不得出现政治敏感词”;

法律映射:引用具体法条(如《广告法》第9条)

3.2 提示词工程的落地步骤

Prompt Engineering(提示词工程)如何落地实现呢?四个步骤":角色定义划定专业领域 → 任务拆解提供执行路径 → 场景限定框定输出维度 → 示例教学锚定风格标准。

1.角色定义划定专业领域 

通过身份设定框定AI的思考边界,让输出更专业。用于规避通用型废话,提升行业针对性,适用场景:法律文书生成、医疗报告撰写、营销文案创作。

【角色】你现在是拥有10年经验的母婴电商运营 

 【任务】分析2024年Q3纸尿裤销售数据  【要求】用小红书爆款笔记风格总结增长亮点  

2. 任务拆解提供执行路径

用“动词+限定词”拆解复杂任务,防止AI跑偏。通过CoT思维链将复杂任务拆解,任务完成准确率大幅提升。

【任务】按照下面步骤生成数据分析报告第一步:统计2024年1-6月长三角地区护肤品销售额TOP3品类  第二步:对比各品类复购率与客单价关系  第三步:用柱状图+200字总结市场趋势  

3. 场景限定框定输出维度

通过时空背景限定输出范围,避免出现已读乱回等不相关推荐。适用场景:个性化推荐、地域化内容生成。

【背景】用户为25-35岁一线城市上班族,通勤时间超1.5小时  
【要求】推荐3款适合地铁上阅读的电子书,每本附50字推荐理由 

4. 示例教学锚定风格标准

用具体案例锚定输出标准,能精准把控语言风格(网络热梗/专业术语),按照格式示范(标题+正文+表情包布局)进行输出。

【任务】请模仿以下风格写防晒霜文案:  标题:今夏晒不黑的秘密被我挖到了!  正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...  

四、高级提示词:提示词工程的类型

(一)、基础提示类型

零样本提示(Zero-Shot Prompting)

定义:直接通过自然语言指令描述任务目标,无需提供任何示例。
核心价值:验证大语言模型(LLM)的泛化能力和基础语义理解水平。
示例:

"将以下中文合同条款翻译成西班牙语:'买方应在货物交付后30天内完成付款'"
 ➜ 直接调用模型的跨语言转换能力,无需预先演示翻译规则。

少样本提示(Few-Shot Prompting)

定义:提供1-5个示例样本,引导模型学习特定格式、风格或逻辑范式。
核心价值:突破零样本的泛化局限,定向塑造输出模式。
示例:

输入:"德芙巧克力味道不错" → 输出:"德芙巧克力口感丝滑,可可香浓郁,包装精致,送礼自用皆宜!"
 任务指令:"请参考此风格改写:'这款咖啡好喝'"
 ➜ 输出:"该咖啡豆酸度明亮,带有焦糖与坚果的复合香气,独立小包装设计便于随身携带。"

角色扮演提示

定义:通过赋予模型特定身份标签,激活其垂直领域知识库。
核心价值:突破通用模型的平均表现,激发专业场景的深度能力。
示例:

系统提示:"你是一位三甲医院呼吸科主任医师,需用通俗语言解释医学术语"
 用户指令:"请说明'支气管扩张症'的典型症状"
 ➜ 输出:"就像水管生锈后变形漏水,患者会长期咳嗽、咳浓痰,严重时呼吸像拉风箱一样带哨音。"

(二)、链式推理类型

思维链(Chain-of-Thought, CoT)

定义:通过分步拆解复杂问题,引导模型模拟人类逻辑推理路径。
核心价值:解决数学推导、因果分析等需要中间推理步骤的任务。
示例:

问题:"某商品成本价200元,按利润率30%定价,促销时打8折,最终盈利多少?"
 提示步骤:

计算定价:200×(1+30%)=260元

促销价格:260×80%=208元

利润计算:208-200=8元
 ➜ 模型通过模仿分步计算过程,显著提升数学题正确率。

思维树(Tree-of-Thought)

定义:构建多分支推理路径,探索问题解决方案的多样性。
核心价值:突破单线思维的局限性,适用于开放式创新场景。
示例:

问题:"如何提升新能源汽车充电桩利用率?"
 分支方案:

经济激励:低谷电价时段补贴

技术优化:开发预约充电APP

资源整合:与商场停车场共享充电位
 ➜ 模型可生成包含多维度策略的可行性报告。

自洽性验证(Self-Consistency)

定义:生成多个候选答案并选择一致性最高的结果。
核心价值:通过统计方法提升复杂问题的输出可靠性。
示例:

指令:"请用三种不同方法证明勾股定理,选择论证最严谨的方案"
 ➜ 模型先后输出代数证明、几何拼接证明、微积分推导,最终选取欧几里得几何法作为最优解。

(三)、生成与优化类型

自动提示工程(APE)

定义:利用模型自身能力迭代优化提示词设计。
核心价值:突破人工设计的经验局限,发现更高效的提示范式。
示例:

初始提示:"写产品文案"
 优化路径:

添加受众定位:"针对25-35岁都市白领"

强化卖点:"突出便携性与续航能力"

设定风格:"采用短视频平台热门话术"
 ➜ 最终生成符合抖音生态的爆款文案模板。

知识生成提示(Generate Knowledge)

定义:调用模型内部知识库生成辅助信息片段。
核心价值:动态构建上下文,提升专业领域任务表现。
示例:

系统指令:"先列出《红楼梦》中贾府的主要人物关系,再分析黛玉葬花的情节隐喻"
 ➜ 模型自动生成人物图谱后,结合封建礼教背景解读葬花行为的社会寓意。

(四)、验证与反思类型

自我反思(Reflexion)

定义:要求模型对自身输出进行批判性评估与迭代修正。
核心价值:突破单次生成的局限性,实现答案质量的持续优化。
示例:

生成初稿:"人工智能将取代80%的人类工作"
 反思指令:"请检查上述观点是否存在数据来源不明确、论证不充分的问题"
 ➜ 输出修订版:"麦肯锡2023年报告显示,到2030年全球约27%的工作岗位可能被自动化技术改造。"

对抗提示(Adversarial Prompting)

定义:通过反向指令限制模型的潜在风险行为。
核心价值:构建安全护栏,防范有害内容生成。
示例:

系统设定:"回答医学问题时必须标注'本建议仅供参考,不能替代专业诊疗'"
 用户提问:"头痛应该吃什么药?"
 ➜ 输出:"建议先测量体温并观察伴随症状(如恶心、视力模糊)。本建议仅供参考,不能替代专业诊疗。"

(五)、结构化框架实践

CO-STAR框架

要素构成:

Context(背景):"分析2023年新能源汽车市场数据"

Objective(目标):"挖掘比亚迪销量增长的核心动因"

Style(风格):"采用券商研报的图表+数据解读格式"

Audience(受众):"面向基金公司投资经理"

Response(格式):"分行业竞争、技术创新、政策红利三个板块"

输出示例:

图表1:2023年Q1-Q4比亚迪市占率变化曲线
 核心发现:DM-i超级混动技术推动产品力跃升,政府购置税减免政策刺激终端消费...

BROKE框架

要素构成:

Background(背景):"跨境电商物流成本持续上涨"

Reasoning(推理):"对比海运、空运、海外仓模式的成本结构"

Output(输出):"制定不同货值商品的最优物流方案"

Knowledge(知识):"引用WTO国际贸易运输白皮书数据"

应用场景:
 企业供应链管理系统自动生成物流决策建议书。

(六)、未来发展方向

多模态提示融合

实践案例:
 输入产品设计图(图像)+ 技术参数表(文本),输出包含卖点解读、使用场景、竞品对比的营销方案。

动态知识增强

技术路径:
 通过RAG(检索增强生成)架构,实时接入行业数据库:

用户提问:"请分析宁德时代最新财报"
 系统操作:自动检索SEC文件→提取关键财务指标→生成可视化分析报告

通过系统化掌握这些提示词工程技术,开发者可精准控制AI模型的输出质量,在智能客服、数据分析、内容创作等领域实现生产力革命。随着大模型能力的持续进化,提示词工程正从"技巧集"向"方法论"演进,成为人机协同时代的核心技能之一。

五、提示词工程的应用技巧

在大模型时代,提示词(Prompt)已成为连接人类意图与AI能力的核心桥梁。如何设计高效、精准的提示词?以下三大技巧可快速提升你的提示词工程水平:

技巧一:深挖官方文档,掌握底层逻辑

大模型厂商的文档(如DeepSeek、OpenAI)往往隐藏着“官方秘籍”,包含经过验证的提示词范式与参数设置规则。

学习标准模板:以DeepSeek文档为例,其“代码生成”章节提供的提示结构: 

Plain Text
"你是一名资深Python工程师,需遵循PEP8规范。任务:用{{算法名称}}实现{{功能描述}},要求添加类型注解和异常处理。输出格式:代码块+逐行注释。"  

 此类模板可直接迁移至同类任务(如Java开发、SQL优化)。

解析参数原理:文档中关于temperature(生成随机性)、max_tokens(输出长度)的说明,能帮助规避“答案跑偏”或“回答中断”问题。

规避常见错误:部分文档会列出禁忌指令(如避免使用“尽可能多”等模糊表述),减少试错成本。

以下是DeepSeek的文档地址:

https://api-docs.deepseek.com/zh-cn/prompt-library

技巧二:善用专业工具,借力优质资源

推荐工具:

AI提示库(中文社区):收录教育、法律、医疗等垂直场景的提示案例库

https://vxc3hj17dym.feishu.cn/wiki/NqZRw9lGKiqiaTkxevXcEF73nQe?table=tblJmjjUu2j9PPvC&view=vew2fUKa8m

PromptBase(提示词交易平台):可购买经过实战检验的提示词,如“亚马逊产品文案生成器”模板(含A/B测试数据)https://promptbase.com/

应用场景:

营销文案:在PromptBase搜索“Instagram爆款标题”,直接获得已验证结构:
"[Emoji]{{核心卖点}} + {{用户痛点}} + {{行动号召}}"

学术润色:使用AI提示库的“SCI论文语法修正”模板,自动添加学术规范要求(如被动语态占比≤30%)。

技巧三:以AI优化AI,实现自我迭代

核心逻辑:让大模型担任“提示词工程师”,通过“元提示”驱动其自我升级。

经典方法:

1.链式优化法:

   第一轮:输出原始答案    

第二轮:"请分析上述回答的问题,指出导致不完善的提示词缺陷"  

  第三轮:"根据缺陷分析,重新设计更精确的提示词"    

2.反向生成法:

    "假设你需要写一个提示词来实现{{目标}},且已知以下失败案例:{{示例}}。请生成一个能规避这些问题的优化版提示词。"    

3.框架约束法:

就是利用我们之前提供的提示词的基本要素来写提示词。比如:

    使用CRISPE等框架结构化输入:

        Context(背景):"面向跨境电商卖家"

        Role(角色):"亚马逊广告优化专家"

        Instructions(指令):"按ACOS从高到低排序问题"

        Steps(步骤):"1.识别无效流量 2.调整关键词匹配类型"

        Examples(示例):"示例问题:'acos高于30%的广告组'"

六、如何判断提示词工程的效果?从“能用”到“好用”的验证方法论

在提示词工程实践中,“有效”的定义永远指向业务目标——没有放之四海皆准的“完美提示词”,只有针对特定场景持续优化的“适配方案”。以下是验证提示词效果的实战框架:

(一)、以终为始:建立“结果导向”的评估标准

定义核心成功指标(CSF)
 根据任务类型锁定关键验证维度:

内容生成类:输出与品牌调性匹配度、用户阅读时长、转化率

问答咨询类:答案准确率(需人工标注测试集)、问题解决率(用户反馈统计)

数据分析类:报表字段完整性、异常数据识别率

案例:

电商客服场景:当提示词修改后,用户问题“退货流程咨询”的一次解决率从68%提升至92%

医疗助手场景:系统提示词加入“必须标注信息来源”后,答案可信度评分(用户调研)提升40%

容忍合理误差区间
 避免过度优化导致的边际效益递减。例如:

创意文案生成允许10%的风格偏离(如偶尔出现非常规比喻)

代码生成要求100%语法正确性,但允许5%的逻辑冗余

(二)、多维压力测试:验证提示词稳定性

跨模型适配性测试
 同一提示词在不同模型的表现差异:

参数敏感性分析
 通过调节temperature(随机性)和top_p(采样阈值)观察输出波动:

低随机性(temperature=0.2):适合需要确定答案的客服场景

高随机性(temperature=0.8):适合需要创意的营销文案生成
验证方法:对同一提示词进行50次抽样,统计关键信息一致性(如合同条款的关键数据偏差率<2%)

极端输入压力测试
 模拟真实场景中的“脏数据”输入,检验提示词鲁棒性:

(三)提示词优化闭环流程:

因为AI大模型的泛化能力,这也是AI大模型的魅力所在,撰写提示词没有一蹴而就、一步到位的方法,我们能够做的就是“反复实验”,直到输出我们想要的结果。可以参考如下四个步骤进行。

通过“撰写→测试→分析→迭代”

首先基于任务目标撰写初版提示词(明确角色、规则、输出格式),随后在多模型(如GPT-4/Claude)、多参数(如temperature=0.2-0.8)、多输入样本(常规/边缘/对抗案例)中测试输出质量,定位问题后针对性调整提示结构(如补充示例、强化约束、拆分步骤),改进后重启测试循环,直至输出稳定性(如10次测试关键信息偏差率<5%)与目标达成率(如用户需求覆盖率>90%)达标。

### 关于提示词工程的综述 提示词工程(Prompt Engineering)近年来成为自然语言处理领域的重要研究方向之一。特别是在大规模预训练模型(LLMs, Large Language Models)兴起之后,如何设计高效的提示词以引导模型生成高质量的结果成为了研究热点。 #### 提示词工程的研究背景 提示词工程的核心在于通过精心设计输入文本的形式来优化大语言模型的表现[^1]。这种技术不仅依赖于模型本身的性能,还高度依赖于提示的设计方式及其与具体应用场景的适配程度。因此,许多者致力于探索更有效的提示构建方法以及其理论基础。 #### EMNLP会议中的相关工作 作为自然语言处理领域的顶级国际会议之一,EMNLP在其历届会议上发表了大量有关提示词工程的文章。这些文章涵盖了从基本概念到高级应用的各种主题: - **2021年EMNLP** 中的一篇重要论文讨论了零样本习环境下的提示工程技术,并提出了几种新颖的方法用于改进传统微调策略的效果[^2]。 - 另一篇发表在同一期上的文章则深入探讨了不同类型的提示对于跨语言迁移任务的影响,揭示了一些之前未被注意到的现象。 #### 综述类资源推荐 针对希望全面了解该领域的读者来说,下面几份公开可用的综述材料可能特别有用: 1. 《A Survey on Prompt Learning for Natural Language Processing》这份文档系统总结了当前主流框架下提示习的主要进展技术细节。 2. 此外,《The Power of Scale for Parameter-Efficient Prompt Tuning》一文中也提供了关于参数高效型提示调整方面的深刻见解。 以下是实现简单版本提示工程的一个Python代码例子: ```python def generate_prompt(input_text, template="Q: {question}\nA:"): """Generate a prompt based on the given input text and template.""" return template.format(question=input_text) input_example = "What is the capital city of France?" print(generate_prompt(input_example)) ``` 此函数可以根据指定模板自动生成适用于特定场景的查询字符串形式的提示信息。 ### 结论 通过对上述内容的习可以看出,无论是理论层面还是实践操作上,提示词工程都还有很大的发展空间等待我们去挖掘发现新知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值