- 博客(34)
- 收藏
- 关注
原创 如何使用中国知网查询文献,并自动生成参考文献格式引文?
如何使用中国知网查询文献?一、登录打开中国知网校内登录校外二、检索并下载文献1.输入检索关键字2.选择我们需要下载的文献3.自动生成参考文献格式引文致谢一、登录打开中国知网校内登录1.百度搜索中国知网,或者点击中国知网链接跳转得到如下页面。2.点击红框中的登录跳转。3.在校内连接校园网,可使用学校提供的账号及密码点击蓝色框登录,或者直接通过红色框直接IP登录。校外1.以哈工大为例,百度搜索哈尔滨工业大学知网。得到如下搜索结果,点击红框中链接跳转。2.点击进入后通过学校提供的链接登录
2020-05-22 23:39:45 33576 3
原创 Pytorch训练网络过程中loss突然变为0
Pytorch训练网络过程中loss突然变为0问题检查参数初始化检查前向传播的网络检查loss的计算格式检查梯度下降实际上是标签出了错误问题// loss 突然变成0python train.py -b=8INFO: Using device cpuINFO: Network: 1 input channels 7 output channels (classes) Bilinear upscalingINFO: Creating dataset
2020-05-11 12:42:11 6873 1
原创 Pytorch调试过程中的BUG
@[TOC](Pytorch loss = criterion(masks_pred, true_masks.squeeze(1)))// An highlighted blockvar foo = 'bar';Traceback (most recent call last): File "train.py", line 182, in <module> val_pe...
2020-04-24 23:42:04 2144
原创 Windows下安装Anaconda3的环境搭建教程
Windows下安装Anaconda3的环境搭建教程一、下载Anaconda3的安装包step1:点击进入如下的下载网址。step2:选择Download下载二、安装Anaconda3安装包step1:找到我们存放的Anaconda3.exe安装文件,左键双击打开。step2:点击红框中的Next.step3:点击红框中的I Agree.step4:点击红框中的All Usersstep5:选择安...
2020-04-24 19:58:11 782
原创 Non-local U-Nets for Biomedical Image Segmentation[2020AAAI]
Non-local U-Nets for Biomedical Image Segmentation 阅读笔记摘要(Abstract)存在的不足创新点实验结果参考文献摘要(Abstract)深度学习在各种生物医学图像分割任务中显示出巨大的应用前景。现有模型通常是基于U-Net的编解码结构与堆叠的本地运营商逐步聚合远程信息。但是,仅使用局部运算符限制效率和效果。在这项工作中,我们建议非局部U-N...
2020-03-27 23:52:37 602
原创 《Graph-FCN for image semantic segmentation》论文阅读笔记
《Graph-FCN for image semantic segmentation》论文阅读笔记摘要论文链接:《Graph-FCN for image semantic segmentation》机器之心:《另辟蹊径,中科院自动化所等首次用图卷积网络解决语义分割难题》摘要使用深度学习执行语义分割在图像像素分类方面取得了巨大进步。但是,深度学习提取高级特征时往往忽略了局部位置信息(loca...
2020-02-28 22:18:44 1942
原创 深度学习的训练过程中学习率调整策略
深度学习的训练过程中学习率调整策略学习率学习率如果说在深度学习训练过程中所有涉及的超参数中,要让你选出一个最重要的超参数,那么一定是学习率这个数值了。...
2019-12-19 20:52:58 1546
原创 Network in Network and 1×1 convolutions
Network in Network and 1×1 convolutions1.前言2. 1×1的卷积如何作用?2.1 1×1 convolutions in 2D image2.1 1×1 convolutions in 3D features3. 1×1卷积作用体现在何处?4. 1×1卷积的网络框架应用举例4.1 Inception结构应用1×1卷积网络结构参数和削减计算成本4.2ResNe...
2019-12-04 19:26:01 552
原创 配置Keras-retinanet环境教程
配置Keras-retinanet环境教程1.安装Anaconda2.设置清华镜像源3.Anaconda下创建虚拟环境4.安装keras-gpu5.下载keras-retinanet代码1.安装Anaconda2.设置清华镜像源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free...
2019-11-29 19:29:00 967
原创 《Context Encoding for Semantic Segmentation》论文解读
《Context Encoding for Semantic Segmentation》Abstract1.Introduction1.1The problem of Dilated/Atrous convolution1.2The problem of multiresolution pyramid-based2.Contribution2.1第一个贡献:2.2第二个贡献:3.Context E...
2019-11-20 22:32:19 320
原创 语义分割评价指标及代码实现详解
语义分割评价指标及代码实现详解前言MIOU前言不管在任何领域,我们都需要一些指标和评价标准来评判我们的工作做的如何,与上次的工作相比是否有所进展。那么在图像分类领域,我们有准确率、精确率和召回率作为我们评价图像分类结果的标准。那么在语义分割领域,我们也需要相对应的指标来定义我们的模型和算法对于图像的分割结果到底如何。那么这篇博客将给大家详细介绍,各种的语义分割指标,并用numpy给大家解释如何...
2019-11-13 22:54:57 3950 3
原创 一文详解BN、LN、IN、GN四种正则化方式
一文详解BN、LN、IN、GN四种正则化方式前言批量归一化-BN(Batch-Normalization)mini-batch 梯度下降法批量归一化(Batch Normalization)的基本动机与原理是什么?在卷积神经网络中如何使用?所以BN和mini-batch的联系和区别在哪儿?快手真题选择题考察参考文章前言楼主前段时间真的是很巧,在面试阿里和大疆的图像算法时。在提及我对网络架构进行...
2019-08-27 10:58:10 3582
原创 C++:最小众倍数求解
最小众倍数求解题目代码实现题目link代码实现#include<iostream>#include<vector>#include<algorithm>using namespace std; int main(){ int n; vector<int> res; while(cin>>n){ ...
2019-08-26 10:16:37 348
原创 如何解决训练网络过拟合的问题?
如何解决训练网络过拟合的问题?前言一、数据1.直接采集更多的数据。2.数据增强3.数据生成二、降低模型复杂度1.削减参数2.网络修改三、正则化方法1.损失函数正则化2.Dropout3.增加BN层(主要用于加快模型收敛)四、训练五、集成方法补充:降低“欠拟合”风险的方法前言如何解决网络过拟合的问题?判断一个训练模型过拟合,主要依据来自于,该模型在训练集上的表现很好。但是在测试集合和新数据上的...
2019-08-24 22:33:03 1939
原创 《C++学习笔记》结构体和类有什么区别
《C++学习笔记》结构体和类有什么区别介绍结构体是一种特殊形态的类什么时候用结构体而不用类?介绍结构体是一种特殊形态的类1.与类的唯一区别:类的缺省访问权限是private,结构体的缺省访问权限是public2.结构体存在的主要原因:与C语言保持兼容什么时候用结构体而不用类?1.定义主要用来保存数据、而没有什么操作的类型2.人们习惯将结构体的数据成员设为共有,此时用结构体更加方便。...
2019-08-23 14:30:56 210
原创 AI有惑:深度学习的中不均衡样本的解决方法
深度学习的中不均衡样本的解决方法场景描述问题描述分析与解答知识点解决思路思路一:二分法查找小结参考文献场景描述在我们训练二分类网络的时候,例如医疗诊断、网络入侵检测、信用卡反诈骗邓。经常会遇到的问题就是正负样本不均衡的问题。如果我们直接采用不均衡的样本集进行训练和处理,会存在一些问题。例如,如果正负样本的比例达到1:99,那么我们的分类器简单地把我们的所有样本全部判定为负样本,都有99%的正...
2019-07-31 20:12:37 1325
转载 ubuntu16.04+opencv4.1+opencv_contrib编译及安装(SIFT、SURF)
历史上最全的ubuntu16.04+opencv4.1+opencv_contrib编译及安装(SIFT、SURF)!!你需要的OPENCV开发环境,看这篇就够了
2019-07-23 14:14:35 3247 2
原创 《剑指offer》面试题11:旋转数组的最小数字(C++实现)
《剑指offer》面试题11:旋转数组的最小数字(C++实现)题目描述解决思路思路一:二分法查找思路二:通过归纳总结数组查找规律小结参考文献题目描述把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0...
2019-05-29 16:21:31 436
原创 《剑指offer》面试题29:顺时针打印矩阵(C++实现)
《剑指offer》面试题29:顺时针打印矩阵(C++实现)题目描述解决思路代码实现小结参考文献题目描述输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.解决思路-每打印一圈...
2019-05-28 21:44:15 461
原创 《剑指offer》面试题25:合并两个排序的链表(C++实现)
《剑指offer》面试题25:合并两个排序的链表(C++实现)题目描述解决思路思路一:递归实现思路二:非递归实现小结参考文献题目描述输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。解决思路这道题重在对于问题的分析和理解。我们函数是得到了两个头节点的指针。我们需要定义一个合并后的链表头节点,然后比较两个链表头节点的值,其中值更小的节点作为合并链...
2019-05-28 20:15:31 547
原创 《剑指offer》面试题4:二维数组的查找(C++实现)
《剑指offer》面试题4:二维数组的查找(C++实现)题目描述解决思路思路一:二分法查找思路二:通过归纳总结数组查找规律小结参考文献题目描述在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。解决思路对于一个二维数组而言,我们可以很轻松地想到,我们用...
2019-05-28 16:40:43 247
转载 一文读懂深度学习中ResNet、Inception和Xception三大变革性结构
一文读懂深度学习中ResNet、Inception和Xception三大变革性结构深度学习ResNet(残差网络)Inception功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你...
2019-05-28 11:03:25 1602
原创 《剑指offer》面试题32:从上到下打印二叉树(C++实现)
@TOC)题目描述题目描述从上往下打印出二叉树的每个节点,同层节点从左至右打印。题目分析这道题遍历二叉树的方法,不是我们熟悉的前序中序和后序遍历,我们对于这种比较新颖的遍历顺序不太熟悉,这种时候我们可以先画画图来模拟我们的整个打印过程。通过具体的分析过程,我们发现了从上到下打印整个二叉树的规律:每次打印一个节点的的时候,我们将这个节点的左节点和右节点先后放入队列的末尾。接下来我们只需...
2019-05-26 15:55:16 352
原创 《剑指offer》面试题31:栈的压入、弹出序列(C++实现)
@TOC)题目描述输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的)题目分析这道题要注意的一点是,栈可以一边压入,一边弹出。而不是一次性按照...
2019-05-26 15:17:50 196
原创 《剑指offer》面试题22:链表中导数第K个节点(C++实现)
《剑指offer》面试题22:链表中导数第K个节点(C++实现)题目描述解决思路思路一:补充布尔型标志位代表无效输入思路二:用位运算符来提高我们的计算效率小结参考文献题目描述输入一个链表,输出该链表中倒数第k个结点。解决思路最简单的方法是让我们遍历这个链表两次。第一次遍历计算出我们的链表有n个节点。第二次遍历时,当走到第n-k+1个节点时,输出对应节点的值即可。但是,我们能不能用一次...
2019-05-26 13:52:01 298
原创 计算机视觉之语义分割系列论文全解
计算机视觉之语义分割系列论文全解语义分割1.FCN网络2.空洞卷积DeepLab(v1和v2)RefineNetPSPnet大内核DeepLab v3VOC 2012引用和出处注明语义分割计算机视觉三大方向,图像分类(Image Classification),目标检测(Object Detection),语义分割(Semantic Segmentation)。今天给大家介绍的就是,语义分割...
2019-05-22 22:38:01 2391
原创 《剑指offer》面试题10:题目4矩形覆盖(C++实现)
《剑指offer》面试题10:题目4矩形覆盖(C++实现)题目描述题目分析解决思路思路一:简单的递归思路二:用数组记录f(n)思路三:自底向上计算(动态规划)小结参考文献题目描述我们可以用2×1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2×1的小矩形无重叠地覆盖一个2×n的大矩形,总共有多少种方法?题目分析我们设f(n)代表n个2×1的小矩形无重叠地覆盖一个2×n的大矩形的方法数目。...
2019-05-22 19:23:13 410
原创 《剑指offer》面试题10:题目3青蛙变态跳台阶(C++实现)
《剑指offer》面试题10:题目2扩展青蛙变态跳台阶(C++实现))题目描述题目分析分析思路1:青蛙对每级台阶可选择过或者不过分析思路2:数学归纳法证明解决思路思路一:循环实现2的正整数次幂思路二:用位操作执行更快小结参考文献题目描述一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。题目分析分析思路1:青蛙对每级台阶可选择过或者...
2019-05-22 19:05:27 614
原创 《剑指offer》面试题10:题目2跳台阶(C++实现)
《剑指offer》面试题10:题目2跳台阶(C++实现)题目描述思路一:简单的递归思路二:用数组记录f(n)思路三:自底向上计算(动态规划)小结参考文献题目描述一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。问题分析:1.如果台阶数小于等于0 返回0。2.如果台阶数等于1 咱们的小青蛙有1种跳法。3.如果台阶数等于2...
2019-05-22 16:45:46 277
原创 《剑指offer》面试题10:题目1斐波那契数列(C++实现)
《剑指offer》面试题10斐波那契数列(C++实现)题目描述思路一:简单的递归思路二:用数组记录f(n)思路三:动态规划实现小结参考文献题目描述要求输入一个n,输出斐波纳妾数列的第n项。斐波那契数列定义如下。f(n)={0n=01n=1f(n−1)+f(n−2)n>1 f(n)=\left\{\begin{aligned}0&&\text...
2019-05-22 16:11:33 324
原创 《剑指offer》面试题6:从尾到头打印链表(C++实现)
@[TOC](《剑指offer》面试题6:从尾到头打印链表))题目描述输入一个链表,按链表值从尾到头的顺序返回一个ArrayList。
2019-05-21 20:37:42 169
原创 一文看懂深度学习中的残差网络
一文看懂深度学习中的残差网络(ResNet--)深度学习深层次的神经网络存在的问题(The problem of very deep neural networks)新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少...
2019-05-21 20:28:07 1643
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人