GSL 系列 6 — 线性代数 2 — LU 分解

本文介绍了GSL库中关于LU分解的相关操作,包括LU分解的实现、转置矩阵对象、求解线性方程组、矩阵求逆以及行列式的计算。建议使用LU分解而非直接求逆来解决线性方程组,以提高效率和准确性。
摘要由CSDN通过智能技术生成

0 写在前面

关于 LU 分解的背景知识介绍,参见:GSL 系列 6 — 线性代数 1 — 背景知识 1 (LU 分解) 节,本篇只说明相关函数

1 LU 分解相关对象和函数

1.1 转置矩阵对象

转置矩阵对象存储着一列索引。第 j j j 个数为 k k k ,表示转置矩阵第 j j j 列是相应单位矩阵的第 k k k 列,定义如下:

// gsl_permutation.h
struct gsl_permutation_struct
{
   
  size_t size;
  size_t *data;
};
typedef struct gsl_permutation_struct gsl_permutation;

1.2 LU 分解函数

将矩阵 A 进行 LU 分解,然后得到转置矩阵 pLU 矩阵储存在 A 中,signum 为 1 或 -1,代表交换的次数,奇数次为 -1,偶数次为 1
因为下三角(梯形)矩阵对角线为 1,不储存,A 刚好可以方向 LU

// gsl_linalg.h
int gsl_linalg_LU_decomp(gsl_matrix * A, gsl_permutation * p, int *signum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值