剑指offer——67剪绳子(Python)

【题目】给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
【思路】第一种方法是暴力递归法,不断的去判断前一次所有的剪法中乘积最大的剪法,Python的递归深度有限制。不建议采取此方法,太多的重复计算。
【代码】

class Solution:
    def fun(self,num):
        ret = 0
        if num < 4:
            return num
        for i in range(num):
            ret = max(ret,i * self.fun(num - i))
        return ret
    def cutRope(self, number):
        if number < 2:
            return 0
        elif number == 2:
            return 1
        elif number == 3:
            return 2
        else:
            return self.fun(number)

第二种方法,动态规划法,根据公式f(n) = max(f(i)*f(n-i)),将一个大的问题拆成若干个已经解决的小问题,创建一个数组(我这里用的是字典。。。)存放之前处理好的结果,用的时候直接去数组里读取结果即可。

class Solution:
    def cutRope(self, number):
        if number < 2:
            return 0
        elif number == 2:
            return 1
        elif number == 3:
            return 2
        dp = {}
        dp[1] = 1
        dp[2] = 2
        dp[3] = 3
        res = 0
        for i in range(4,number+1):
            for j in range(1,i/2+1):
                res = max(res,dp[j]*dp[i-j])
            dp[i] = res
        return dp[number]

第三种方法,贪心算法,根据数学推导,在number大于4时,将其划分为若干3和剩下的相乘得到的积最大,等于4时分为2×2乘积最大,在下列代码中直接乘以4了。

class Solution:
    def cutRope(self, number):
        max = 1
        if number < 3 and number > 0:
            return number - 1
        while number > 4:
            number -= 3
            max = max*3
        return number * max
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值