【题目】给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
【思路】第一种方法是暴力递归法,不断的去判断前一次所有的剪法中乘积最大的剪法,Python的递归深度有限制。不建议采取此方法,太多的重复计算。
【代码】
class Solution:
def fun(self,num):
ret = 0
if num < 4:
return num
for i in range(num):
ret = max(ret,i * self.fun(num - i))
return ret
def cutRope(self, number):
if number < 2:
return 0
elif number == 2:
return 1
elif number == 3:
return 2
else:
return self.fun(number)
第二种方法,动态规划法,根据公式f(n) = max(f(i)*f(n-i)),将一个大的问题拆成若干个已经解决的小问题,创建一个数组(我这里用的是字典。。。)存放之前处理好的结果,用的时候直接去数组里读取结果即可。
class Solution:
def cutRope(self, number):
if number < 2:
return 0
elif number == 2:
return 1
elif number == 3:
return 2
dp = {}
dp[1] = 1
dp[2] = 2
dp[3] = 3
res = 0
for i in range(4,number+1):
for j in range(1,i/2+1):
res = max(res,dp[j]*dp[i-j])
dp[i] = res
return dp[number]
第三种方法,贪心算法,根据数学推导,在number大于4时,将其划分为若干3和剩下的相乘得到的积最大,等于4时分为2×2乘积最大,在下列代码中直接乘以4了。
class Solution:
def cutRope(self, number):
max = 1
if number < 3 and number > 0:
return number - 1
while number > 4:
number -= 3
max = max*3
return number * max