题目
给你一棵以 root 为根的二叉树和一个 head 为第一个节点的链表。
如果在二叉树中,存在一条一直向下的路径,且每个点的数值恰好一一对应以 head 为首的链表中每个节点的值,那么请你返回 True ,否则返回 False 。
一直向下的路径的意思是:从树中某个节点开始,一直连续向下的路径。
示例 1:
输入:head = [4,2,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true
解释:树中蓝色的节点构成了与链表对应的子路径。
示例 2:
输入:head = [1,4,2,6], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true
示例 3:
输入:head = [1,4,2,6,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:false
解释:二叉树中不存在一一对应链表的路径。
提示:
- 二叉树和链表中的每个节点的值都满足 1 <= node.val <= 100 。
- 链表包含的节点数目在 1 到 100 之间。
- 二叉树包含的节点数目在 1 到 2500 之间。
思路一
根据题目可知要在二叉树中判断是否存在与链表相等的路径,最简单的办法就是循环遍历。循环遍历可以采用迭代法。
- 首先判断特殊情况:一是链表是否为空,
是
返回true
;二是二叉树是否为空,是
返回false
(也是第二个递归函数isSubPath
的终止条件); - 其次判断第一个结点是否相等:
- 相等(或关系):
- 调用第一个递归函数
isSubPathRecur
,再依次判断在左右子树是否存在与head.next
相等的结点; - 调用第二个递归函数
isSubPath
,判断左右子树中是否存在与head
相等的结点;
- 调用第一个递归函数
- 不相等:调用第二个递归函数
isSubPath
,判断左右子树中是否存在与head
相等的结点;
- 在调用第一个递归函数
isSubPathRecur
时,递归的终止条件同1;此时已经至少存在一个结点相等,再判断该递归函数传入参数的第一个结点值是否相等:
- 相等,存在两种情况:左子树与链表下一个结点是否相等;右子树与链表下一个结点是否相等;
- 不相等:则这条路径二者不相等,返回
false
;
class Solution {
public boolean isSubPath(ListNode head, TreeNode root) {
//Step1:判断特殊情况
if(head == null) return true;
if(root == null) return false;
//Step2:递归调用
if(head.val == root.val){
//分为四种情况
return isSubPathRecur(head.next, root.left)