2024 CSP暑期集训营地 - 思维题&异或 -晚测

contest - DAY08

T1

考点:分治、贪心

题意

给你一个序列 a 1 , a 2 , … , a n a1,a2,…,an a1,a2,,an。你可以对这个序列进行若干次操作。

设一次操作前序列长度为 m m m,那么这次操作你可以选择一个整数 i i i 使得 1 ≤ i ≤ m − 1 1 \le i \le m-1 1im1 a i ≠ a i + 1 a_i \neq a_{i+1} ai=ai+1,删除 a i + 1 a_{i+1} ai+1 并把 a i a_i ai 的值设成 任意整数

求最多能进行多少次操作。

对于所有数据,满足 1 ≤ n ≤ 1 0 5 1 \le n \le 10^5 1n105 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109

分析

先说结论。

结论
  1. 如果 ∀ i ∈ [ 1 , n − 1 ] , a i = a i + 1 ∀i∈[1,n−1],a_i=a_{i+1} i[1,n1],ai=ai+1 (即所有 a i a_i ai 都相等),答案为 0。
  2. 否则,答案为 n−1。
证明

结论 1 1 1,证明显然。

对于结论 2 2 2,归纳法可证(记 f ( i ) f(i) f(i) 表示长度为 i i i 时,至少存在一对不等的相邻数时,最大操作次数):

  • n = 1 n=1 n=1 时, f ( 1 ) = 0 f(1)=0 f(1)=0,结论成立。
  • n > 1 n>1 n>1 时, f ( n ) = f ( n − 1 ) + 1 f(n)=f(n−1)+1 f(n)=f(n1)+1,结论成立。因为我们可以通过每次操作,留下至少一对不等的相邻数(对于每次操作的 i,都将 a i a_i ai 修改为一个没有出现过的数)。

代码

#include <bits/stdc++.h>
using namespace std;

// 分治或找规律总结
const int N = 1e5 + 10;
int n;
int a[N];
bool flag = false;

int main()
{
	cin >> n;
	for (int i = 1; i <= n; i++)
		cin >> a[i];

	/*
	观察规律可得,如果存在连续相等的数字,最开始的数与前一个不等 / 最末尾的数与后一个不等,则可以全部消灭
	判断 n 个数,是否存在一对两两不相等的数字,如果存在,则可以消灭 n-1 个数字。
	否则,为 0 个数字。
	*/
	for (int i = 1; i < n; i++)
		if (a[i] != a[i + 1])
		{
			flag = true;
			break;
		}
	if (flag)
		cout << n - 1 << endl;
	else
		cout << 0 << endl;

	return 0;
}

T2

考点:数学、位运算

呼和浩特的小 R 是 RyanLi,另外 shinzanmono 也住在呼和浩特。


问:询问是否存在正整数 x 使得 m 个 x 的异或和为 n?

测试点 1∼2

此时只有 n = 0 n=0 n=0

观察发现当 m m m 为奇数时无法得到 0 0 0 m m m 为偶数时任意 m m m 个相同正整数异或得到的结果都是 0 0 0

  • m m m 为偶数时输出 Yes,否则输出 No

测试点 3∼4

此时只有 m = 2 m=2 m=2 m = 3 m=3 m=3

考虑 m = 2 m=2 m=2 的情况,对于任意正整数 x x x,由于 x x x x x x 的每个二进制位都相同,所以 x ⊕ x = 0 x⊕x=0 xx=0。因而能得到的整数只有 0。

考虑 m = 3 m=3 m=3 的情况,由于 x ⊕ x ⊕ x = 0 ⊕ x = x x⊕x⊕x=0⊕x=x xxx=0x=x。故可以得到任意正整数,只有 0 无法被得到。

  • m = 2 m=2 m=2 时,若 n = 0 n=0 n=0 输出 Yes,否则输出 No
  • m = 3 m=3 m=3 时,若 n ≠ 0 n \neq 0 n=0 输出 Yes,否则输出 No

测试点 5

因为 x ⊕ x = 0 x⊕x=0 xx=0 x ⊕ 0 = x x⊕0=x x0=x m ≥ 2 m \ge 2 m2,所以当 m > 3 m>3 m>3 m m m 个相同正整数的异或等于 m − 2 m−2 m2 个相同正整数的异或。

$ \underbrace{ x⊕x⊕x⊕⋯⊕x }{m 个 x}$ = 0 ⊕ $ \underbrace{ x⊕⋯⊕x }{m-2 个 x}$ = $ \underbrace{ x⊕⋯⊕x }_{m-2 个 x}$

更进一步地,当 m m m 为奇数时 m m m x x x 的异或等于 3 3 3 x x x 的异或;当 m m m 为偶数时 m m m x x x 的异或等于 2 2 2 x x x 的异或,即 0 0 0。因此:

  • m m m 为偶数且 n = 0 n=0 n=0,输出 Yes
  • m m m 为奇数且 n ≠ 0 n \ne 0 n=0,输出 Yes
  • 其余情况输出 No

单组数据时间复杂度 O ( 1 ) O(1) O(1)

#include <bits/stdc++.h>
using namespace std;

// #define ll long long
int n, m, T;

int main()
{
	cin >> T;
	while (T--)
	{
		cin >> n >> m;
		if (m % 2 == 0 && n == 0 || m % 2 == 1 && n != 0)
			cout << "Yes" << endl;
		else
			cout << "No" << endl;
	}
	return 0;
}

T3

考点:贪心

分析

​ 因为每一次的条件都是从后面的一个点 x x x 走向前面的一个点 y y y,所以我们要找到所有条件下最后面的那个点 m a ma ma ,然后从这个点到 n n n 选取一个反转价值最小的点 m i mi mi ,然后从这个反转价值最小的点反转,再一次性走到 0 0 0

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
ll n, m, a[200010], x, y, mx, mi = 0x3f3f3f3f;

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    for (int i = 1; i <= m; i++)
    {
        cin >> x >> y;
        mx = max(mx, x);
    }
    for (int i = mx; i <= n; i++)
        mi = min(mi, a[i]);
    cout << mi;
    
    system("pause");
    return 0;
}

T4

考点:异或运算、找规律、优化

思路

首先,我们可以猜测这就是 找规律题,因为我们不可能在 1 秒内跑 1 0 18 10^{18} 1018 的数据。

我们可以发现,除非是 n n n k k k 均为偶数,其他都必须进行一次操作。

比如: n = 4 n=4 n=4

我们把它进行转换:

( a 1 , a 2 , a 3 , a 4 ) → ( a 2 ⊕ a 3 ⊕ a 4 , a 1 ⊕ a 3 ⊕ a 4 , a 1 ⊕ a 2 ⊕ a 4 , a 1 ⊕ a 2 ⊕ a 3 ) → ( a 1 , a 2 , a 3 , a 4 ) → . . . (a1,a2,a3,a4) → (a2⊕a3⊕a4,a1⊕a3⊕a4,a1⊕a2⊕a4,a1⊕a2⊕a3)→ (a1,a2,a3,a4)→... (a1,a2,a3,a4)(a2a3a4a1a3a4a1a2a4a1a2a3)(a1,a2,a3,a4)...

可以发现当 n n n偶数时,答案将会在 原来的式子变换一次的式子 之间徘徊。

同样,我们也可以验证 n n n 是奇数的性质:除第一次外其他都是 变换一次的式子

只需要特判 n 和 k 均为偶数时即可。

其中进行一次操作技巧,具体见代码。

#include <bits/stdc++.h>
using namespace std;
#define ll long long
// P9227 异或积
// 异或 & 总结规律
const int N = 1e5 + 10;
ll a[N], b[N];
ll n, k, T;
void solve()
{
    // 原做法
    //    for( int i=1;i<=n;i++ ) // O(n)
    //        for( int j=1;j<=n;j++ ) // O(n)
    //            if( i!=j ) b[i] ^= a[j]; // O(n^2), 超时
    // 优化:a1^a2^a3^a4^...^an,先做一遍异或积 O(n),再异或当前位置的数 ax 即为 bx,时间复杂度 O(2n)
    ll ans = 0; // 优化后,时间复杂度降至 O(2n)
    for (int i = 1; i <= n; i++)
        ans ^= a[i];
    for (int i = 1; i <= n; i++)
        b[i] = ans ^ a[i];
}

int main()
{
    cin >> T;
    while (T--)
    {
        cin >> n >> k;
        for (int i = 1; i <= n; i++)
            cin >> a[i];
        if (n % 2 == 0 && k % 2 == 0) // 特判,n和k都为偶数的情况为原式子
        {
            for (int i = 1; i <= n; i++)
                cout << a[i] << " ";
            cout << endl;
            continue;
        }
        
        solve(); // 其他情况,式子 a[] 转变一次即为答案
        for (int i = 1; i <= n; i++)
            cout << b[i] << " ";
        cout << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值