4.1 广义线性模型之Possion回归模型的SGA实现(与statsmodels中的Possion对比)

在2.3节中,我们从广义线性模型推导出了Possion回归模型,这个模型在sklearn.linear_model中并没有实现,由此,我认为有实现的必要。在Github上浏览的时候,发现在statsmodels.discrete.discrete_model中实现了此模型,因此,在这里,我给出自己实现的Possion回归模型实现代码并与其进行效果对比。

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons

def hypothesis(x):
    return np.exp(x)
def SGA(X,y,a=0.001):
    theta=np.zeros(3).T
    for times in range(1000):
        for i in range(100):
            theta+=a*(y[i] - hypothesis(X[i].dot(theta)) )*X[i].T
    return theta
#生成数据
np.random.seed(0)
X,y=make_moons(n_samples=100)
X=np.insert(X,0,1,axis=1)
#梯度上升获得参数,预测
theta=SGA(X,y)
predVals1=hypothesis(np.dot(X,theta))

pModel=sm.Poisson(y,X).fit()
predVals2=pModel.predict(X)

fig,axes=plt.subplots(nrows=1,ncols=2,sharey=True)
axes[0].plot(y, 'r*-', range(len(y)), predVals1, 'bo-.'
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
泊松回归模型是一种广泛应用于计数型数据的统计模型。它用于估计与特定因素相关的事件发生率。泊松分布是一种离散概率分布,常用于描述单位时间内某个事件发生的次数。 泊松回归模型与普通线性回归模型类似,但其适用于因变量是计数型数据的情况。而普通线性回归模型假设因变量服从正态分布。 泊松回归模型的表达形式是:ln(μ) = β₀ + β₁X₁ + β₂X₂ + ... + βₖXₖ,其μ表示事件发生的平均次数,β₀、β₁、β₂...βₖ是待估计的回归系数,X₁、X₂...Xₖ是自变量,ln()表示自然对数。 在泊松回归模型,回归系数βₖ的估计结果可以用来解释自变量对事件发生率的影响。如果回归系数βₖ是正的,则说明自变量Xₖ的增加与事件发生率的增加相关;如果回归系数βₖ是负的,则说明自变量Xₖ的增加与事件发生率的减少相关。此外,可以利用估计结果计算出事件发生率的相对变化。 我们可以通过最大似然估计方法来估计泊松回归模型的参数。最大似然估计方法是一种常用的参数估计方法,它通过寻找模型参数值,使得给定样本出现的概率最大化。 总之,泊松回归模型是一种用于估计计数型数据的统计模型。它可以帮助我们理解自变量对事件发生率的影响,并且可以通过最大似然估计来估计模型参数。泊松回归模型在许多领域,如医学、社会学、经济学等都有广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序大猩猩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值