弗洛伊德算法求最短路径

算法简介


可以解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题

算法的时间复杂度为 O ( N 3 ) O(N^3) O(N3),空间复杂度为 O ( N 2 ) O(N^2) O(N2)

与迪杰斯特拉算法不同的是,迪杰斯特拉算法只能求单源最短路径,并且不能处理负权边

算法思想


动态规划的思想

D i , j , k D_{i, j, k} Di,j,k 为从 i i i j j j 的只以 ( 1.. k ) (1 . . k) (1..k) 集合中的节点为中间节点的最短路径的长度。

  1. 若最短路径经过点k, 则 D i , j , k = D i , k , k − 1 + D k , j , k − 1 D_{i, j, k}=D_{i, k, k-1}+D_{k, j, k-1} Di,j,k=Di,k,k1+Dk,j,k1;
  2. 若最短路径不经过点k, 则 D i , j , k = D i , j , k − 1 ∘ D_{i, j, k}=D_{i, j, k-1^{\circ}} Di,j,k=Di,j,k1

因此, D i , j , k = min ⁡ ( D i , j , k − 1 , D i , k , k − 1 + D k , j , k − 1 ) D_{i, j, k}=\min \left(D_{i, j, k-1}, D_{i, k, k-1}+D_{k, j, k-1}\right) Di,j,k=min(Di,j,k1,Di,k,k1+Dk,j,k1)

代码


for ( int k = 1; k <= n; k ++) {
            for ( int i = 1; i <= n; i ++) {
                for ( int j = 1; j <= n; j ++) {
                    W[i][j] = min(W[i][j], W[i][k] + W[k][j]);
                }
            }
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值