原题连接:数组中的第K个最大元素
题意
-
给你一个整数数组
nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 -
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
思路:动态规划
- 首先对数组进行遍历,当前最大连续子序列和为 temp,最终结果为 ans
- 如果 t e m p > 0 temp>0 temp>0 ,则说明 temp 对结果有增益效果,则 sum 保留并加上当前遍历数字
- 如果 t e m p < = 0 temp<=0 temp<=0 ,则说明 sum 对结果无增益效果,需要舍弃,则 sum 直接更新为当前遍历数字
- 每次比较 sum 和 ans 的大小,将最大值置为 ans,遍历结束返回结果
- 时间复杂度: O ( n ) O(n) O(n)
状态转移方程
f ( i ) = max { f ( i − 1 ) + n u m s [ i ] , n u m s [ i ] } f(i)=\max \{f(i-1)+n u m s[i], n u m s[i]\} f(i)=max{f(i−1)+nums[i],nums[i]}
代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int ans=nums[0];
int temp=0;
for(auto num:nums)
{
if(temp>0) temp+=num;
else temp=num;
ans=max(ans,temp);
}
return ans;
}
};