给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v
1
v
2
… v
k
}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
#include<stdio.h>
#define Max 100
int visit1[Max];
int visit2[Max];
//邻接矩阵
void DFS(int edge[][Max],int n,int v){
int i,j;
visit1[v]=1;
printf("%d ",v);
for(j=0;j<n;j++){
if(visit1[j]!=1&&edge[v][j]==1){
DFS(edge,n,j);
}
}
}
void BFS(int edge[][Max],int n,int v){
int i,j;
int front=0,rear=0;
int queue[n];
visit2[v]=1;
printf("%d ",v);
rear++;
queue[rear]=v;
while(front!=rear){
front++;
j=queue[front];
for(i=0;i<n;i++){
if(visit2[i]!=1&&edge[j][i]==1){
printf("%d ",i);
visit2[i]=1;
rear++;
queue[rear]=i;
}
}
}
}
int main(){
int edge[Max][Max];
int a,b,c,d,m,n,i,j,e;
memset(edge,0,sizeof(edge));
memset(visit1,0,sizeof(visit1));
scanf("%d %d",&n,&e);
for(i=0;i<e;i++){
scanf("%d %d",&a,&b);
edge[a][b]=1;
edge[b][a]=1;
}
for(i=0;i<n;i++){
if(visit1[i]==0){
printf("{ ");
DFS(edge,n,i);
printf("}");
printf("\n");
}
}
for(i=0;i<n;i++){
if(visit2[i]==0){
printf("{ ");
BFS(edge,n,i);
printf("}");
printf("\n");
}
}
}