7-6 列出连通集 (25 分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:
按照"{ v
1

v
2

… v
k

}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

#include<stdio.h>
#define Max 100
int visit1[Max];
int visit2[Max];

//邻接矩阵

void DFS(int edge[][Max],int n,int v){
    int i,j;
    visit1[v]=1;
    printf("%d ",v);
    for(j=0;j<n;j++){
        if(visit1[j]!=1&&edge[v][j]==1){
            DFS(edge,n,j);
        }
    }
}
void BFS(int edge[][Max],int n,int v){
    int i,j;
    int front=0,rear=0;
    int queue[n];
    visit2[v]=1;
    printf("%d ",v);
    rear++;
    queue[rear]=v;
    while(front!=rear){
        front++;
        j=queue[front];
        for(i=0;i<n;i++){
            if(visit2[i]!=1&&edge[j][i]==1){
                printf("%d ",i);
                visit2[i]=1;
                rear++;
                queue[rear]=i;
            }
        }
    }
}
int main(){
    int edge[Max][Max];
    int a,b,c,d,m,n,i,j,e;
    memset(edge,0,sizeof(edge));
    memset(visit1,0,sizeof(visit1));
    scanf("%d %d",&n,&e);
    for(i=0;i<e;i++){
        scanf("%d %d",&a,&b);
        edge[a][b]=1;
        edge[b][a]=1;
    }
    for(i=0;i<n;i++){
        if(visit1[i]==0){
            printf("{ ");
            DFS(edge,n,i);
            printf("}");
            printf("\n");
        }
    }
    for(i=0;i<n;i++){
        if(visit2[i]==0){
            printf("{ ");
            BFS(edge,n,i);
            printf("}");
            printf("\n");
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值