HDU-1576
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2
1000 53
87 123456789
Sample Output
7922
6060
扩展欧几里得算法
这个算法就是用来给出如下方程的整数解:
a*x+b*y=1
当然,我这里讲的是这个算法的阉割版,完整的扩展欧几里得算法可以解决ax+by=c的等式
不过这里有个大前提就是a要跟b互质(也就是GCD(a,b)=1),否则该方程无整数解
先给出代码,这里假设该函数为EXGCD(a,b,x,y),其中后面两个参数传的是引用,也就是用于做返回值的
void EXGCD(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 1;
return;
}
int px, py;
EXGCD(b, a%b, px, py); //有没有觉得这里的前面两个跟GCD算法很像
x = py;
y = px - (a / b) * py;
}
现在解释一下这个算法:
首先,如果b=0的话,这里的a肯定是等于1的。因为在最开始的条件中要求a跟b互质,而参数a跟b的迭代事实上就是欧几里得算法的迭代(辗转相除法,对比一下上面GCD的代码),最终得到的结果肯定是1。于是此处为了让等式成立,x肯定等于1,而y就可以随便取值了
那么接着就是一般情况了。首先我们假设如下不等式已经解决:
bx'+(a%b)y'=1
这个其实就是个递归过程,我们之后就是利用递归解决的结果来还原我们要的结果。
于是等式事实上等价于:
由于a%b=a-(a/b)*b,故有: <=这一步请仔细思考为什么,然后再往下看
bx'+(a%b)y'=1
=> bx'+(a-(a/b)*b)y'=1
=> bx'+ay'-(a/b)*by'=1
=> ay'+b[-(a/b)y'+x']=1
那么我们只需要令:
x=y'
y=-(a/b)y'+x'
就可以还原成我们需要的等式了(事实上就是根据递归的结果构造出我们需要的一个可行解)
回到计算逆元的问题
于是,我们就可以使用扩展欧几里得算法来直接求逆元了。
由于C是质数,所以二元一次不等式肯定有解。
题解:拓展的欧几里得算法有个大前提就是a要跟b互质(也就是GCD(a,b)=1),否则该方程无整数解,根据题意,输入的n=A%9973(没有输入A),A%B=0(A必能被B整除),B与9973互素(GCD(B,9973)=1)。解题过程首先是建立方程,然后才能编写程序。
设x=(A/B)%9973(x是最终想计算的值),则9973k+x=A/B(k为整数),得A=9973Bk+xB。
因为n=A%9973与A=9973Bk+xB,所以xB%9973=n,得xB=n+9973y。
故:(x/n)B+(-y/n)9973=1=GCD(B,9973),该方程有解。
#include<iostream>
using namespace std;
int EXGCD(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 1;
return a;
}
int px, py;
int d=EXGCD(b, a%b, px, py);
x = py;
y = px - (a / b) * py;
return d;
}
int main()
{
int t, n, B;
while (cin >> t)
{
while (t--)
{
cin >> n >> B;
int x, y;
int d = EXGCD(B, 9973, x, y);
cout << (x*n % 9973 + 9973) % 9973 << endl;
}
}
return 0;
}
网上的另外一个解法:试探法
题解:根据题意,输入的n=A%9973(没有输入A),A%B=0(A必能被B整除),B与9973互素(GCD(B,9973)=1)。
解题过程首先是建立方程,然后才能编写程序。
设x=(A/B)%9973(x是最终想计算的值,满足0<=x<=9972),则9973k+x=A/B(k为整数),得A=9973Bk+xB。
因为n=A%9973与A=9973Bk+xB,所以xB%9973=n,得xB=n+9973y,亦得xB-n=9973y。
故:(xB-n)%9973=0
对于上式,只需要用试探法就可以求得x。这样,程序运行速度相当快。
(摘自https://blog.csdn.net/tigerisland45/article/details/51239640)
#include <stdio.h>
int main(void)
{
int t, i, j;
long long n, b, a=9973;
scanf("%d", &t);
for(i=0; i<t; i++) {
scanf("%lld%lld", &n, &b);
for(j=0; j<a; j++)
if((j * b - n) % a == 0) {
printf("%d\n", j);
break;
}
}
return 0;
}